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Abstract

Existing tensor compilers have proven their effectiveness in
deploying deep neural networks on general-purpose hard-
ware like CPU and GPU, but optimizing for neural processing
units (NPUs) is still challenging due to the heterogeneous
compute units and complicated memory hierarchy.

In this paper, we present AKG, a tensor compiler for NPUs.
AKG first lowers the tensor expression language to a polyhe-
dral representation, which is used to automate the memory
management of NPUs. Unlike existing approaches that resort
to manually written schedules, AKG leverages polyhedral
schedulers to perform a much wider class of transformations,
and extends the semantics of the polyhedral representation
to combine complex tiling techniques and hierarchical fusion
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strategies. We also implement the domain-specific optimiza-
tion of convolution in AKG. Moreover, to achieve the optimal
performance, we introduce complementary optimizations in
code generation, which is followed by an auto-tuner.
We conduct extensive experiments on benchmarks rang-

ing from single operators to end-to-end networks. The ex-
perimental results show that AKG can obtain superior per-
formance to both manual scheduling approaches and vendor
provided libraries. We believe AKG will cast a light on the
follow-up compiler works on NPUs.

CCSConcepts: · Software and its engineering→ Source

code generation.

Keywords: neural networks, neural processing units, poly-
hedral model, code generation, auto-tuning
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1 Introduction

Deep learning (DL) frameworks like TensorFlow [1], Py-
torch [53], MXNet [11] and CNTK [59] express deep neural
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networks as directed acyclic graphs of tensor operations.
These frameworks provide promising performance for many
applications by leveraging highly optimized vendor libraries
and making transparent use of architectures, but fall short in
supporting custom operators invented by users/high-level
optimizing engines, exploiting transformations across oper-
ators, and tuning for divergent sizes and shapes.

A variety of optimizing compilers for tensor programs, e.g.,
TVM [12], Tensor Comprehensions (TC) [62] and Tiramisu [4],
have been devised to address these challenges. However, the
ever increasing data and computation make DL a voracious
appetite for computing power, resulting in the hardware
race between tech giants to pursue emerging NPUs, like
Google TPU [33], Graphcore IPU [32], Cerebras WSE [56]
and Huawei Ascend [43]. Although some of these tensor
compilers declare the portability to different architectures,
most of them only target CPU/GPU/FPGA architectures.

Deploying DLmodels onmodern NPUs [33, 43, 44] is quite
challenging due to (1) the conflicting demands of parallelism
and spatial/temporal locality between heterogeneous com-
pute units, (2) the requirement of effective storage manage-
ment between hierarchical memories, and (3) the difficulty
of modeling non-trivial optimizations that are not present
in general-purpose architectures. Although an expert can
approach near-optimal performance through manual tuning,
optimizing hand-written programs is error-prone, difficult
to debug, and rarely scales with the increasing problem com-
plexity. Developing an optimizing compiler has thus become
a crucial obstacle of an NPU’s ecosystem.

In this paper, we present an approach, called Automatic
Kernel Generation (AKG), for NPUs to accelerate DL mod-
els. We inherit the graph engine and the domain-specific
language (DSL) of TVM [12] for expressing tensor computa-
tions, and focus on the operator-level optimization and code
generation. This isolates the hardware-specific transforma-
tions from high-level graph optimizations, allowing the reuse
of existing functionalities like range inference, data layout
transformations and abstraction level lowering and minimiz-
ing the engineering cost. AKG also provides DL frameworks
with the ability to fuse any subgraphs into fewer operators.

The workflow of our tensor compiler branches from TVM
by converting the HalideIR [55] lowered from the DSL to a
polyhedral intermediate representation (polyhedral IR) [20],
enabling the parametric range specification that is not acces-
sible in TVM but essential in some scenarios, e.g., dynamic
shapes. Rather than resorting to manual schedule templates,
AKG leverages versatile polyhedral scheduling algorithms
that compute new schedules by solving integer linear pro-
gramming (ILP) problems [9, 17] to exploit parallelism and
locality of programs simultaneously, allowing the systematic
formulation of ILP problems along with the flow of com-
putation between heterogeneous compute units. This not
only saves human efforts, but also captures a wider set of
transformations than Halide [55] and TVM [12].

Another reasonwhywritingmanual schedules for NPUs is
non-trivial is because the set of schedule primitives of TVM
does not completely fit an NPU’s architecture, making the
management of dataflow across the memory hierarchy a diffi-
cult task.We leverage and extend the semantics of the polyhe-
dral IR [20] to further widen the optimization space of AKG,
facilitating an efficient storage management strategy. Our
extension to the polyhedral IR models novel combinations
of overlapped tiling [38, 69] and loop fusion [34, 48] which
is impossible in existing polyhedral compilers [4, 40, 62],
maximizing the use of our target architecture by triggering
more aggressive storage optimizations.

Lowering to the polyhedral IR also solves the challenge to
model domain-specific optimizations including the img2col

transformation [21, 67] and fractal transformation [71] that
are not expressible in either polyhedral optimizers [4, 40, 62]
or semi-automatic compilers [12, 55]. We introduce a pattern-
specific pass that converts the polyhedral IR into a new one,
with the aforementioned transformations fully automated
by relating the polyhedral IRs before and after this pass.

Finally, we postpone some low-level transformations that
go beyond the power of polyhedral compilation to the code
generator as complementary optimizations; a learning-based
auto-tuner is also used to achieve the optimal performance.
Unlike the enhancements of Halide [2, 42, 50] and TVM [13,
72, 73] that still rely on manual efforts, the AKG compiler
implements a fully automatic workflow.
We implement AKG as the optimizer for the Huawei As-

cend chips [43] and demonstrate its effectiveness by con-
ducting extensive experiments. When experimenting on sin-
gle operators, our approach can achieve comparable per-
formance to the code manually optimized by experts and
a mean speedup of 1.6× over TVM. AKG can outperform
the two baselines by 1.3× and 5.6× on average, respectively,
when optimizing subgraphs of DL models, and exceeds that
of TVM by 20.2% in the case of end-to-end networks.
The contributions of our work are as follows.

• We present AKG, a fully automatic, end-to-end tensor
compiler for NPUs, which significantly reduces the
software development life cycle from months to hours.

• AKG achieves much better performance using a rich
set of program transformations, which is further re-
inforced by complex tiling and fusion techniques and
domain-specific transformations.

• Our approach enables the automation of managing
complicated memory hierarchy, which effectively ad-
dresses the productivity gap between DL models and
heterogeneous architectures.

2 Background

A DL optimizer is typically composed of a graph engine and
a tensor compiler. The graph engine takes a model from DL
frameworks, represents it using a computation graph, and
outputs an optimized graph by applying high-level dataflow
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rewriting transformations. The tensor compiler deploys each
fused operator in the graph to the target machine bymeans of
loop transformations, effective hardware binding and mem-
ory management, and code generation strategies. Existing
approaches can be categorized into two groups.
Writing manual schedule templates. The idea of this

approach is to separate schedule and compute, allowing users
to describe their algorithm using compute without consider-
ing underlying architectures. The tensor compiler provides
a set of schedule primitives to the developers to perform
machine-dependent optimizations. Halide [55] and TVM [12]
are two representatives of this category. While achieving
promising performance on general-purpose platforms, this
approach still relies heavily on manual efforts.

Many approaches [2, 13, 42, 50, 72, 73] work on optimizing
the performance of manually written schedules. However,
none of these compilers target an NPU. The schedule primi-
tives available in these compilers constitute a limited set of
transformations that are difficult to scale with the increasing
scenarios due to the rapid advance in DL algorithms. Ex-
panding the schedule primitives is a feasible solution, but it
may result in the combinatorial explosion issue.
Leveraging polyhedral IR. This approach converts a

tensor program into polyhedral IR and performs schedule
transformations. The typical examples of this category in-
clude Tiramisu [4] and MLIR [40], which allow manual in-
tervention but apply transformations on top of a polyhedral
IR. While performing transformations systematically, poly-
hedral IR also simplifies the storage management.

TC [62] is another representative of this category that goes
further by using the polyhedral scheduling heuristics [9, 17] to
compute schedules in the absence of human efforts. Although
the affine schedulers of the polyhedral model release the
burden of developers by fully automating the scheduling
process, the performance of TC is considered as inferior to
those of the first category due to the ineffective modeling
of target architecture. Besides, we did not find a polyhedral
compiler specialized for NPU architectures.
Challenges from NPU architectures. Developing opti-

mizing compilers for an NPU architecture is still an open
issue, which faces (at least) the following challenges.
First, scheduling for NPUs is difficult. An NPU is usually

designed as an accelerator that requires sophisticated fusion
strategies in addition to complex tiling techniques. The com-
putations should be grouped aggressively when offloaded
onto the chip to maximize locality, while an architecture-
specific fusion should be applied when data flow to different
compute units. Besides, further rescheduling steps within the
local buffers may also be required to benefit for vectorization.
Second, managing the dataflow within an NPU requires

the explicit decoupled data orchestration [52] due to the
multi-level, multi-directional memory hierarchy present in
most domain-specific architectures, e.g., Google TPU [33]
and Huawei Ascend chips [43]. Existing approaches designed

for traditional memory hierarchy pyramid are not suitable
for these architectures.
Finally, an effective implementation of a convolution is

calling for the img2col transformation [21, 67] that performs
a convolution using a general matrix multiplication (GEMM)
product. Some domain-specific hardware like the fractal ar-
chitecture [71] wishes for the further decomposition of a
GEMM product into fractal blocks. These domain-specific
transformations are beyond the power of existing approaches.

Domain-specific architectures. We choose Huawei As-
cend 910 chips, with its DaVinci architecture shown in Fig. 1,
to address the above challenges. Implementing our approach
for this target can provide a general solution that the tensor
compilers for other NPUs can follow, since the DaVinci ar-
chitecture adopts a similar memory hierarchy to TPU [33]
and requires a fractal transformation introduced by the Cam-
bricon architecture [71] when handling convolutions.

The DaVinci architecture uses a Cube Unit for processing
matrix operations, a Vector Unit for executing vector compu-
tations and a Scalar Unit to handle scalar tasks. The arrows
represent the possible dataflow paths between themulti-level
hierarchy. L0A and L0B serve as the input buffers of the Cube
Unit, whose output is stored in L0C. External data should be
offloaded to L1 Buffer or Unified Buffer (UB) which constitute
the second level buffers of the memory hierarchy. img2col is
handled within the memory transfer engine (MTE), of which
the result will be passed to the fractal transformation.

Figure 1. The DaVinci architecture of Ascend 910.

Our solution. None of existing approaches can fully meet
the requirements of our target. We consider to complement
TVM with a backend to support code generation for the
DaVinci architecture. However, its limited schedule primi-
tives are not sufficient to model the complete set of transfor-
mations nor the effective storage management. Fortunately,
the decoupled modules of TVMmake it easy to lower its DSL
to HalideIR and polyhedral IR. We thus introduce another
pass that converts the HalideIR generated from TVM’s DSL
to polyhedral IR where most transformations are performed.
Integrating the polyhedral model into TVM not only allows
the reuse of existing functionalities of the latter, but also
balances the weaknesses of both approaches.
As revealed by MLIR [40] and TC [62], lowering to the

polyhedral IR [20] can automate storage management. The
polyhedral schedulers [9, 17] are integrated with different
fusion heuristics; one can choose a suitable fusion strategy
for each compute unit by switching between the heuristics.
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However, the generic, black-box use of the ILP solver [63]
makes the performance inferior to that of TVM [12, 13].
In spite of that, a recent study [7] demonstrates that a

careful manipulation of polyhedral IR can obtain near-peak
performance for GEMM. Inspired by this work, we isolate the
fusion heuristics from the polyhedral schedulers and apply
fusion in conjunction with tiling as post-scheduling trans-
formations. This provides more choices for the combination
of tiling and fusion by enabling complex tile shapes.

The last difficulty is the modeling of domain-specific trans-
formations. To the best of our knowledge, there exists no
previous work studying this issue in the context of polyhe-
dral compilation. We introduce an external pattern-specific
polyhedral IR of a fractal GEMM routine by formulating
the relations between the original convolution and the final
GEMM implementation, and use it to substitute its corre-
spondence of the convolution in the original polyhedral IR.
This results in the practical implementation of the domain-
specific transformation in tensor compilers.

3 Overview of AKG

Fig. 2 depicts the architecture of AKG. AKG takes as input a
fused operator that has been specified using the DSL of TVM,
which rewrites the computation graph representation gener-
ated by the graph engine. The graph engine of TVM inherited
by AKG provides the ability to transparently integrate with
different DL frameworks; AKG targets the optimizations of
individual layers/subgraphs of a DL model.

Tensor Expression

Polyhedral Schedule Tree

Loop Fusion for Locality

Loop Tiling

Loop Fission for Parallelism

Storage Management

Backend Optimizations

Instruction Emitter

Synchronization

Low-level Assembly

Auto TuningAuto Tiling

Hardware Spec

Codegen

Polyhedral

MindSpore TensorFlow PyTorch MxNet Caffe ...

Figure 2. Architecture of AKG.
The DSL is then lowered to a parametric HalideIR expres-

sion, which is further converted into a polyhedral IR [20]. As
the polyhedral model calls for the fulfillment of łstatic affine
controlž [18] of a program, we implement a class of auto-
matic preparation steps including function inlining, common
subexpression elimination, etc. before lowering to the poly-
hedral IR, which also moderates the compilation overhead.

Most loop transformations are applied on top of the poly-
hedral IR, with the scheduling heuristics of isl [63] to find

a tiling-friendly composition of loop transformations, and
a combination of tiling and fusion to model parallelism and
spatial/temporal locality with respect to the hardware model.
The tiling strategy is computed based on optimization pat-
terns derived from the hardware model, and can be fine-
tuned using a learning-based algorithm. Storage manage-
ment is also fully automated in polyhedral compilation, with
minimizing data movements taken into consideration.
Finally, the optimized polyhedral IR is delivered to the

code generator, producing imperative code executable on the
target architecture. Syntactic transformations that are diffi-
cult to model using polyhedral compilation are performed in
the code generator. These post-polyhedral transformations
further widen the optimization space of AKG.

4 Polyhedral Transformations

Performing computation on an NPU usually has to access off-
chip data. The huge computing power brought by an NPU
is usually hindered by the redundant data exchanges be-
tween the off-chip memory and on-chip buffers. A compiler
should apply loop fusion to create more on-chip intermediate
values such that the amount of data movement can be mini-
mized. When data has been offloaded, one has to manage the
memory hierarchy of an NPU, making loop tiling a natural
candidate for exploiting this feature of the architecture.
However, a program is not always amenable to fusion or

tiling due to data dependences. We thus first resort to a poly-
hedral scheduler to transform the original program into a
form that can benefit for fusion and tiling. Given the compo-
sition of tiling and fusion has been modeled, one can transfer
the data required by an NPU with the minimal amount of
data. This works well for traditional memory hierarchy pyra-
mid, but optimizing for the complicated memory hierarchy
of NPUs requires a further exploration of on-chip loop fu-
sion/distribution for the heterogeneous compute units. We
introduce a post-tiling fusion strategy to address this issue.

The aforementioned analysis finally results in the design
rationale of our compiler transformations, all of which are
performed on top of the polyhedral IRśschedule trees [20].
We convert the DSL of TVM into the schedule tree represen-
tation, which is built using a rich set of node types that will
be introduced along with the following steps.

4.1 Versatile Polyhedral Scheduling

Programs amenable to the polyhedral model are represented
using integer sets and affine maps. Each program statement
is instanced using its index variables, and the complete set of
these runtime statement instances constitutes the iteration
domain, expressed using integer sets, of a program. The
iteration domain is represented using the identical domain

node in the schedule tree of a program. The textual execution
order defines the original schedule of the iteration domain,
which is transformed automatically by polyhedral schedulers
into a different one represented by affine maps.

1236



AKG: Automatic Kernel Generation for NPUs PLDI ’21, June 20ś25, 2021, Virtual, Canada

A = te.placeholder((H,W), name="A")
A = te.compute((,), lambda h,w: A[h,w] + bias, name="A")
B = te.placeholder((KH,KW), name="B")
kh = te.reduce_axis((0,KH), "kh")
kw = te.reduce_axis((0,KW), "kw")
C = te.compute((H-KH+1,W-KW+1), lamda h,w: 
te.sum(A[h+kh,w+kw]*B[kh,kw], axis=kh,kw), name="C")
C = te.compute((,), lamda h,w: abs(C[h,w]), name="C")
C = te.compute((,), lamda h,w: ReLU(C[h,w]), name="C")

(a) The DSL expression of a running example

Domain
    Sequence
        Filter{S0(h,w)}
            Band{S0→(h,w)}
        Filter{S1(h,w); S2(h,w,kh,kw)}
            Band{S1→(h,w);S2→(h,w)}
                Sequence
                    Filter{S1(h,w)}
                    Filter{S2(h,w,kh,kw)}
                        Band{S2→(kh,kw)}
        Filter{S3(h,w)}
            Band{S3→(h,w)}
        Filter{S4(h,w)}
            Band{S4→(h,w)}

(b) The initial schedule tree

Domain
    Sequence
        Filter{S0(h,w)}
            Band{S0→(h,w)}
        Filter{S1(h,w); S2(h,w,kh,kw); S3(h,w); S4(h,w)}
            Band{S1→(h,w);S2→(h,w); S3→(h,w); S4→(h,w)}
                Sequence
                    Filter{S1(h,w)}
                    Filter{S2(h,w,kh,kw)}
                        Band{S2→(kh,kw)}
                    Filter{S3(h,w)}
                    Filter{S4(h,w)}

(c) The schedule tree after polyhedral scheduling

Domain = {S0(h,w): 0≤h<H∧0≤w<W; S1(h,w),S2(h,w,kh,kw),S3(h,w),S4(h,w): 0≤h≤H-KH∧0≤w≤W-KW∧0≤kh<KH∧0≤kw<KW}

Domain
    Sequence
        Filter{S0(h,w)} /* an intermediate iteration space */
            Band{S0→(h,w)}
        Filter{S1(h,w); S2(h,w,kh,kw); S3(h,w); S4(h,w)}    /* a live-out iteration space */
            Band{S1→(h/32,w/32);S2→(h/32,w/32); S3→(h/32,w/32); S4→(h/32,w/32)}
                Band{S1(h,w)→(h,w);S2(h,w,kh,kw)→(h,w); S3(h,w)→(h,w); S4(h,w)→(h,w)}
                    Sequence
                        Filter{S1(h,w)}
                        Filter{S2(h,w,kh,kw)}
                            Band{S2→(kh,kw)}
                        Filter{S3(h,w)}
                        Filter{S4(h,w)}

(d) Tiling live-out iteration space
Domain
    Sequence
        Filter{S0(h,w)}
            Mark{"skipped"} /* The nodes below will not be scanned by code generator. */
                Band{S0→(h,w)}
        Filter{S1(h,w); S2(h,w,kh,kw); S3(h,w); S4(h,w)}
            Band{S1→(h/32,w/32);S2→(h/32,w/32); S3→(h/32,w/32); S4→(h/32,w/32)}
                Extension    /* Introduce foreign subtree, i.e., S0, to the live-out subtree.*/
                    Sequence
                        Filter{S0(h,w)}
                            Band{S0→(h,w)}
                        Filter{S1(h,w); S2(h,w,kh,kw); S3(h,w); S4(h,w)}
                            Band{S1→(h,w);S2→(h,w); S3→(h,w); S4→(h,w)}
                                Sequence
                                    Filter{S1(h,w)}
                                    Filter{S2(h,w,kh,kw)}
                                        Band{S2→(kh,kw)}
                                    Filter{S3(h,w)}
                                    Filter{S4(h,w)}

(e) Post-tiling fusion using an extension node

Domain
    Sequence
        Skipped Filter{S0(h,w)}
        Filter{S1(h,w); S2(h,w,kh,kw); S3(h,w); S4(h,w)}
            Band{S1→(h/32,w/32);S2→(h/32,w/32); S3→(h/32,w/32); S4→(h/32,w/32)}
                Extension
                    Sequence
                        Filter{S0(h,w)}
                            Mark{"local_UB"}
                                Band{S0→(h,w)}
                        Filter{S1(h,w); S2(h,w,kh,kw)}
                            Band{S1→(h,w);S2→(h,w)}
                                Sequence
                                    Filter{S1(h,w)}
                                    Filter{S2(h,w,kh,kw)}
                                        Band{S2→(kh,kw)}
                        Filter{S3(h,w)}
                            Mark{"local_UB"}
                                Band{S3→(h,w)}

  Filter{S4(h,w)}
                            Mark{"local_UB"}
                                Band{S4→(h,w)}

(f) Intra-tile fusion using clustering strategies

Extension = {(o1,o2)→S0(h,w): 32o0≤h<32o0+KH+31∧32o1≤w<32o1+KW+31∧0≤o0<⌈(H-KH+1)/32⌉∧0≤o1<⌈(W-KW+1)/32⌉}

Figure 3. A running example and its schedule tree representations.

Polyhedral schedulers expose a much wider set of affine
transformations than TVM [12] while automatically guaran-
teeing the validity of the transformations by preserving each
dependence. In particular, auxiliary loop transformations in-
cluding skewing, shifting and scaling that are not considered
by TVM are fully modeled. One is free to set different sched-
uling options that enable/disable certain types of loop trans-
formations for tuning the scheduling process, which is much
easier than writing schedule templates. We resort to the isl
scheduler [65] that uses the Pluto algorithm [9] as a primary
scheduling strategy and the Feautrier algorithm [17] as fall-
back for computing a new schedule, maximizing parallelism
(executing independent statement instances in parallel) and
temporal locality (executing dependent statement instances
close in time) simultaneously.

The isl scheduler computes an affine function and decodes
it using a band node in schedules trees by solving ILP prob-
lems. Considering the complexity of ILP problems, the isl
scheduler introduces an affine clustering heuristic [62, 65]
to decrease the size of ILP problems and implements loop
fusion by iteratively grouping band nodes. Each fusion group
is represented by a filter node in schedule trees, which is
connected by a sequence/set node with its children. When
the band nodes cannot be fused, a sequence/set node is intro-
duced to express the particular/arbitrary order.

We show a typical fused pattern obtained from the graph
engine in Fig. 3(a), with the pseudo code shown in Fig. 5(a).
The statement IDs are also marked in Fig. 5(a) instead of

Fig. 3(a) because the DSL represents the initialization and
reduction statements as a compound operator. It performs
a 2D convolution, followed by two vector operators, on the
input feature maps A using kernels B, with the result written
to the output feature maps C. A constant (bias) addition step
is also used before the convolution. The initial schedule tree
depicted in Fig. 3(b) is built using the textual order of the
fused subgraph, with the domain node shown at the bottom.

Loop tiling can now be applied to each grouped band node
produced by the affine clustering heuristic of isl. This iso-
lated implementation manner, which is also adopted by other
polyhedral compilers [9, 62, 64], results in two kernels that
have to executed on an NPU, failing to meet the requirement
of generating a single kernel for each fused sub-graph as
expected by DL frameworks. In addition, such an implemen-
tation of loop tiling and fusion is also inferior at minimizing
the data movement between the hierarchical memories of an
NPU. This is because traditional polyhedral approaches only
transform the iteration spaces, but the conflict is due to the
lose of alignment between the tiled data spaces after loop
fusion. The conflicting demands of tiling and fusion can be
alleviated provided such alignments can be recovered.
To enforce the generation of a single kernel, we use the

reverse strategy proposed in our earlier work [70] which
completely eliminates the mismatches between tiled data
spaces using elementary combinations of the operations on
affine sets and maps. This reverse strategy allows for the
construction of arbitrary tile shapes and enables post-tiling

1237



PLDI ’21, June 20ś25, 2021, Virtual, Canada Zhao, Li, Nie, Geng, Zhang, Gao, Cheng, Wu, Cheng, Li, Di, Zhang, Jin

fusion. However, we still have to perform additional on-chip
loop optimizations and domain-specific transformations of
convolution, leading to the following transformation order.

4.2 Tiling

Loop tiling [27] is essential to benefit from the locality and
parallelism provided by faster local memories. The imple-
mentation of loop tiling boils down to two issues: one is to
construct tile shapes and the other is to select tile sizes. We
address the first issue with our previous reverse strategy and
the second using a tile-size specification language which was
not considered in the past [9, 64].
Constructing tile shapes. Following our priorwork [70],

we first adopt a conservative clustering strategy of isl to con-
vert the initial schedule tree into the form shown in Fig. 3(c)
by maximizing the tiling opportunities, with the correspond-
ing pseudo code shown in Fig. 5(b). The two fusion groups
produced by this clustering strategy, which are represented
using the two filter nodes under the top sequence node, are
considered as an intermediate and a live-out iteration space,
respectively, as shown in Fig. 3(d). A live-out iteration space
is composed of the statements writing to memory locations
that will be referenced after the computation of the program,
while the definitions of an intermediate iteration space to
memory locations will be consumed within the computation.

Unlike the traditional manner used to perform tiling and
fusion independently, the reverse strategy [70] only tiles
the live-out iteration space using a quasi-affine function
{S2(h,w,kh,kw) → (h/32,w/32,h,w,kh,kw)}, with 32×32
representing the tile sizes along h and w dimensions. This
converts the 4D iteration space of S2 into a 6D space, with
(h/32,w/32) expressing the tile loops (iterating between
tiles) and (h,w,kh,kw) the point loops (iteratingwithin tiles),
producing a rectangular tile shape on the live-out space.
The memory footprint of each live-out iteration tile can

be determined by applying the read access relations to the
integer set representing this tile. In particular, we are inter-
ested in the data tiles of the input feature maps A that result
in the producer-consumer relation between the two iteration
spaces. As the convolution is performed over the input fea-
ture maps A, its data tile shape can be in arbitrary forms (over-
lapped, continuous or scattered) depending on the strides
of the convolution kernels. The resulted arbitrary data tile
shape can be used by the reverse strategy [70] to compute
the relation between this tiled live-out iteration space (con-
sumer) and the intermediate iteration tile (producer). As a
result, the tile shape of the intermediate iteration space can
be arbitrary. For the example shown in Fig. 3, the reverse
strategy produces an affine function {(o0,o1) → S0(h,w) : 0 ≤

o0 < ⌈(H −KH + 1)/T2⌉ ∧ 0 ≤ o1 < ⌈(W −KW + 1)/T3⌉ ∧T2 · o0 ≤

h < T2 · o0 + KH +T2 − 1 ∧T3 · o1 ≤ w < T3 · o1 + KW +T3 − 1}

which relates the tile loop dimensions (o0 = h/32,o1 = w/32)

of S2 with those subregions (tiles) of S0, allowing for the
overlaps between the iteration tiles of S0. This tile shape can

also benefit for the aggressive storage optimizations [51, 55]
and domain-specific transformations [21, 67] (Sec. 4.5).

Specifying tile sizes.Although parametric tiling has also
been widely investigated [23, 35], many polyhedral optimiz-
ers [4, 62] still either use default values embedded in compil-
ers or only allow users to specify tile sizes before applying
transformations. TVM lets engineers specify tile sizes along
with writing schedule templates and overcome this weak-
ness. The complicated memory hierarchy of modern NPUs
requires a more sophisticated strategy to select tile sizes.
We propose a tile-size specification language as shown

in Fig. 4. A polyhedral statement can be specified using a
user-defined tiling policy, which can be defined using the
specifications on either single or multi-level buffers. A speci-
fication of tile sizes is composed of the tile sizes along each
loop dimensions and the string indicating the location the
data accessed by this statement should be placed.

stmt_id :: "S_" integer

tile_size :: integer

tile_spec :: tile_size @ buffer

tile_specs :: tile_spec | tile_specs, tile_spec

stmt_spec :: stmt_id : tile_specs

tiling_policy :: stmt_spec | tiling_policy stmt_spec

Figure 4. Tiling policy specification language.

While compatible with the strategy of constructing com-
plex tile shapes, this specification language is more flexible
than existing approaches in many aspects. First, the users
do not need to worry about the tile shapes or check the va-
lidity of tiling, which is guaranteed by the polyhedral model.
Second, this language avoids the scenario in which a com-
piler reorders an input program into a completely different
form and the resulted loop dimensions do not match the
user-specified tile sizes. This happens frequently when a
compiler optimizes a neural network using the combination
of tiling and fusion. Finally, like the manual scheduling ap-
proaches [72, 73], the language depicted in Fig. 4 also widens
the optimization space of the auto-tuner.
Automating tile-size specification.We also introduce

a mechanism, Auto Tiling, to automate the tile-size spec-
ification using the language shown in Fig. 4. Auto Tiling
can determine the tile sizes by inspecting the structure of
a schedule tree; it can also work better with the help of the
hardware specification as will be introduced in Sec. 4.6.
Auto Tiling is designed to always find the tile sizes that

can minimize the data movement, which is the sum of a fixed
warm-up cost plus the amount of data movement along tile
boundaries divided by the amount of computation. As for
a non-contiguous data transfer requirement, the amount of
data movement is defined as a weighted sum of the contigu-
ous transfer count and the complete set of data movement.
The amount of computation is simply specified as the total
number of instances of each statement within the tile.

We express the buffer utilization using a multivariate poly-
nomial of symbolic tile sizes according to the dependences
within a tile. Next, we let the buffer utilization be smaller
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or equal to the half size of the buffer capacity, enabling the
double buffering optimization that can benefit the memory
latency hiding (Sec. 5.2). A greedy searching algorithm is
then used to find the best tile sizes. As a result, Auto Tiling
can generate a much better tiling strategy for most simple
computation patterns like tensor addition in DL models.

4.3 Fusion

Loop fusion [34, 48] is a transformation tominimize producer-
consumer distances and therefore optimize the locality. It
has been integrated into polyhedral compilation [8, 49] for
exploiting more combinations with other loop transforma-
tions. Existing fusion heuristics did not consider the multi-
directional memory hierarchy of NPUs. We refine the fusion
strategies in accordance with the memory hierarchy.
Fusion when offloading data. The relation produced

by our reverse strategy can be used to instance an extension

node to implement fusion after tiling, which was impossible
in classical polyhedral frameworks [4, 40, 62], as shown at
the bottom of Fig. 3. The syntax of an extension node in
schedule trees is to introduce foreign statement instances
that are originally not scheduled by a (sub)tree.

This extension node is then introduced underneath a band
node that represents the point loops of the pre-constructed
tiles. The original subtree of a producer iteration space is
marked as useless using a mark node, which will be skipped
by the code generator for avoiding incorrect code replication.
A mark node can attach any information expressed using
strings. Note that facilitating post-tiling fusion exposes more
combinations of tiling and fusion than prior work that either
rely on standard schedule trees [20, 62, 69] or the simpli-
fied version [7]. We have no awareness of other polyhedral
representations able to perform such post-tiling fusion.

As an illustrative example, the post-tiling strategy used by
our compiler can fuse all statements into a single group, as
shown in Fig. 3(e), while enabling overlapped tiling on the
iteration space of S0. The tensor A that is defined by S0 and
read by S2 (Fig. 5(a)) can thus be allocated within the chip,
mitigating the cost of transferring data. More importantly,
modeling post-tiling fusion by manipulating schedule trees
can find more aggressive fusion strategies without losing
the parallelism/tilability than existing approaches [8, 28, 49]
while ensuring the absence of redundant computation [70].
The fusion algorithm is performed greedily when there exist
multiple intermediate iteration spaces.
Fusion when forking data. Once data is offloaded, one

has to manage the multi-directional dataflow, which cannot
be handled using the reverse strategy [70]. This requires a dif-
ferent fusion strategy from that is used when offloading data
onto the chip. The tiled data accessed by different compute
units should bifurcate, with some streaming to L1 and others
to UB. An operator will be delivered to the Cube Unit when
it is a convolution or a matrix product; others are handled
by Vector or Scalar Unit. The hypothesis we made in this

paper is that an operator involving dot-product reductions
is viewed as a convolution. The bifurcation of data requires
an architecture-specific intra-tile fusion strategy.

Wemark the computations that do not involve dot-product
reductions using a łlocal_UBž string, indicating that these
statements should stream to UB. A subtree marked by a
łlocal_UBž string is then isolated from its original position
in the schedule tree, thereby automatically managing the
branching of data within the chip. This isolation is always
valid, since it is the reverse process of the fusion before tiling.
The validity is guaranteed by the conservative clustering
heuristic. Fig. 3(f) depicts the result of this operation.
Intra-tile rescheduling can be now introduced. First,

loop distribution is enabled by default within the łlocal_UBž
subtree, which separates the statements to be processed by
Vector/Scalar Unit for the purpose of vectorization; second,
an aggressive fusion strategy is used by the Cube Unit, group-
ing the initialization and reduction statements to cooperate
with the optimization of convolution as will be discussed in
Sec. 4.5. Note that loop distribution is the reverse process of
fusion; one can implement it using ILP solvers like isl [63]
by setting off the clustering strategies. The loop distribution
transformation separates S3 and S4 in Fig. 5(b) into two filters,
each of which can be vectorized, as shown in Fig. 3(f).

Optimizing intra-tile spatial locality has also been studied
in the past for maximizing vectorization opportunities on
CPUs by refining the scheduling heuristics of the polyhedral
model [37]. Our work is inspired by this work but does not re-
formulate the ILP problem for a łlocal_UBž subtree. Instead,
we sink the fast varying dimension to the innermost position
of a permutable band node, each dimension of which can
always be interchanged safely. The permutability of a band
node is determined automatically by polyhedral schedulers,
guaranteeing the correctness of the sinking operation with-
out reformulating ILP problems [62]. One can thus expect
a similar effect to that of the work [37] using our approach
while alleviating complication overhead.

As an example, Fig. 5(c) shows the pseudo code corre-
sponding to the schedule tree of Fig. 3(f). The post-tiling
fusion groups all statements together, with the assistance of
overlapped tiling of the statement S0.

Figure 5. The pseudo codes of the running example.
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4.4 Storage Management

The schedule tree representation also provides a convenient
interface for automatic storage management. Like PPCG [64]
and TC [62], we implement a software-controlled mem-
ory management by promoting data tiles to the multi-level
buffers of our target. Given an iteration tile of a fusion group,
a constant-size strided block can be inferred using the access
relations or one can compute an over-approximated rectan-
gular box [63] for those shapes that access non-rectangular
blocks of data. The intermediate values accessed by an itera-
tion tile can be promoted to the local buffers of our target
and discarded after the computation of the tile.

The data tiles accessed by a subtree marked by łlocal_UBž
are transferred to UB, while the data required to execute a
convolution reside in L1. We transform each convolution
using the optimization that will be introduced in Sec. 4.5 into
a GEMM product, which will rewrite each convolution using
the form of Z+=X×Y. The input matrix X and Y are always
promoted to L0A and L0B respectively, while the output
matrix Z is placed in L0C.
Note that hierarchical tiling may be required by those

computations flowing to the Cube Unit, which can be im-
plemented by rewriting the band nodes of the point loops
obtained by the first level tiling using quasi-affine functions.
The memory footprint required by the Cube Unit is always
accurate thanks to our tiling strategy, regardless of over-
lapped, continuous or scattered access manners caused by
the strides of convolution kernels. Also note that automatic
insertion of synchronizations can be performed using the
functionality of an extension node, which was also imple-
mented by PPCG and TC.

4.5 Optimization of Convolution

Performing convolution in an efficient way is essential to
achieve high performance for DL models. We resort to the
img2col transformation that converts a convolution into
GEMM product which is in general faster than a convolution.
img2col has been integrated into Caffe [30] but no previous
tensor compilers implement it as a first-class citizen due to
the failure of modeling arbitrary tile shapes.

Figure 6. The img2col transformation.

Implemented by MTE in Fig. 1, the img2col transforma-
tion can be explained using Fig. 6. Each local patch of the
input and the convolution kernel is expanded to a vector.
This conversion requires the overlapped accesses between
consecutive patches (the blue and red dashed ellipses). The
output is converted to the matrix Z. The GEMM product is
depicted at the bottom of Fig. 6, with its relation with the
original convolution shown using dashed lines in the figure.
Note that MTE is only responsible for transforming data
layout. As a convolutional computation pattern should be
converted into a matrix product form, the polyhedral model
still has to perform transformations on iteration spaces.
img2col makes it possible to wrap highly optimized ven-

dor libraries, but we take another way by decomposing the
resulted matrix product into fractal GEMM kernels, since the
target hardware uses a fractal architecture [71], of which the
last-level block calls for a small GEMM kernel with aligned
accesses for guaranteeing high performance.

We build an external polyhedral IR of a fractal matrix prod-
uct, with the band nodes tiled and the innermost dimension
aligned according to the fractal pattern shown in Fig. 7. The
red broken lines within each matrix represent the execution
order of tiles, while the green broken lines are the execution
order of point loops within a tile. Each tile of a matrix is
aligned (and padded if necessary) to fit in the last-level block
of the fractal architecture.

Figure 7. The fractal GEMM product.

Next, we introduce a custom pass that grafts the polyhe-
dral IR of the fractal matrix product to replace the corre-
spondent subtree, as the pink region shown in Fig. 3(f), of a
convolution. The relation between the subtree and the ex-
ternal polyhedral IR is computed using the following affine
functions, which are inferred from the img2col and fractal

transformations. f is the size of the last-level block of the
fractal architecture that will be instanced using an integer
number in practice; sh and sw represent the convolution
strides along h andw dimensions, of which the number of
padding dimensions are expressed using padh and padw re-
spectively. % is used to denote the modulo operation.





i0 = i
′
0; i1 = ⌊(i ′2/(KH · KW ))⌋; i4 = i

′
4

i2 = ⌊(
i′1 ·f +i

′
3

wo
)⌋ + sh + ⌊(

i′2
KW )⌋%KH − padh

i3 = ((i ′1 · f + i
′
3)%wo ) · sw + i

′
2%KW − padw

(1)

The input feature maps of an NCHW convolution are re-
quired to be written in the 5D form of A[N ,C1,Hi ,Wi ,C0],
which tiles the input channel dimension Ci and sinks the
point loop dimension C0 to the innermost position. The out-
put feature maps C can be written as C[N ,Co ,Ho ,Wo]. The
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subscript i/o is used to distinguish the input/output feature
maps, e.g., Hi represents the height of an input feature map.
One can conclude that M=Ho ·Wo , N=Co and K=C1 · KH ·

KW · C0 hold, where M , N , K represent the extents of the
target GEMM product in Fig. 6. ik (0 ≤ k ≤ 4) in (1) repre-
sent the index variables (N ,C1,Hi ,Wi ,C0 from outermost to
inner) of the input feature maps A; i ′

k
(0 ≤ k ≤ 4) are the

index variables (N ,Mo ,Ko ,Mi ,Ki from outermost to inner) of
the matrix X in Fig. 7. The indexes of matrices Y and Z can
also be determined in a similar way. Note that embedding
an external schedule tree does not only improve the perfor-
mance of convolutions but also conceals the complicated
architecture of NPUs from users.

One can remove the reduction dependences of the fractal
GEMM product to implement parallel reductions. The sub-
tree of a reduction after the removal of self-dependences is
annotated using a mark node, which will be processed by
the code generator using special hardware intrinsics.

4.6 Manual Scheduling and Debugging

We design a memory hierarchy specification language to pro-
vide the functionality of manual management of dataflow.
Managing the complicated dataflow can be realized by spec-
ifying a (sequence of) łnpuž statement(s), (each of) which
is instanced using either a specific compute unit, a buffer
specification indicating the destination buffers, or a detailed
description of dataflow. A statement residing in a particular
compute unit is specified by the computation type, followed
by the input buffers, output buffers and two integer values
representing the throughput and alignment of the compute
unit respectively. A dataflow specification starts with a spe-
cial string, followed by the same set of parameters as the
compute unit statement. One can also introduce a memory
allocation statement using the buffer specification statement,
which is composed of a string representing a particular buffer
location and its memory size.

buffer :: string

buffer_size :: integer

buffer_spec :: "buf" buffer ( buffer_size )

compute_type :: string in a predefined set

in_bufs :: buffer | in_bufs buffer

out_bufs :: buffer | out_bufs buffer

throughput :: integer

alignment :: integer

compute_unit :: compute_type ( in_bufs -> out_bufs,

throughput, alignment )

dataflow :: "dataflow" ( in_bufs -> out_bufs,

throughput, alignment )

npu_stmt :: compute_unit | buffer_spec | dataflow

npu_spec :: npu_stmt | npu_stmts npu_stmts

Figure 8. Memory hierarchy specification language.

The specification language enables fine-grained manage-
ment of the memory hierarchy, going beyond the manual
scheduling approaches by providing a much richer set of
interfaces integrated with the domain-specific architectures.
The design of the specification language is used to simplify
debugging and manual management of dataflow on demand:

the users can write such specifications or modify those gen-
erated by AKG to enforce the code generator to work as
they expect. However, the versatility and effectiveness of
our compiler still depend on the polyhedral IR. We never use
this manual specification in the experiment.

5 Code Generation

Generating code from the polyhedral IR amounts to first
generating Abstract Syntax Tree (AST) and then converting
the AST to specific IR or imperative program. The schedule
tree representation lowered from HalideIR is first converted
back using the code generation algorithm of isl [63], which
is then translated to an imperative program of our target.

An imperative program of our target is referred to as CCE
code which is a C-like programming model designed by fully
considering the architectural features of Ascend 910 [43]
including the SIMD intrinsics. Scheduling for automatic vec-
torization is not considered by isl, which was addressed in
our work by manipulating the polyhedral IR. Another weak-
ness of the classical AST generator of isl is that it does not
support automatic generation of vectorization code. We com-
plement the code generator with a vectorization step.

5.1 Vectorization

Exploiting effective SIMD vectorization is vital due to the
frequent presence of compute-bound operators in neural
networks. Our fusion strategy introduced in Sec. 4.3 breaks
down a subgraph into small pieces that can be translated into
SIMD intrinsics of the target machine. The domain-specific
transformations discussed in Sec. 4.5 maximize the alignment
of vectorization; the code generator can thus improve the
performance by making full use of the hardware intrinsics.
More specifically, the code generator takes as input the

optimized HalideIR obtained from the polyhedral optimizer
that captures the necessary amount of information, includ-
ing alignments, strides, source and destination of a SIMD
intrinsic, required to generate efficient SIMD code, with auto-
matic alignment of unaligned loads taken into account. Data
layout transformations may also be involved here to change
the data organization into the expected form. Isolating full
tiles from partial tiles [35] is also enabled by default to max-
imize the vectorization. Besides, the transformations that
only change the loop structure but not the computations, e.g.,
loop unrolling, can also be performed here as complemen-
tary optimizations. In summary, we maximize the utilization
of SIMD hardware intrinsics.

5.2 Low-level Optimization of Synchronization

Much of the versatility and effectiveness of the high-level
memory management resides in the manipulation of sched-
ule trees. However, modern NPUs usually resort to the de-
coupled access-execute (DAE) architectures [60] where each
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compute unit and data movement unit has an independent in-
struction pipeline, and synchronization is required between
the pipelines to preserve data dependences. This optimiza-
tion is out of the scope of polyhedral compilation.
Memory latency hiding, one of the optimizations consid-

ered by TVM, is implemented as a post-polyhedral transfor-
mation in AKG. However, TVM did not take into considera-
tion the heterogeneous compute units, leading to the inef-
fective optimization of low-level synchronization. We first
insert low-level synchronizations into the generated code by
considering the data dependences across different compute
units; a follow-up optimization is then used to group the
synchronizations using a dynamic programming strategy,
thereby reducing the number of synchronizations.

5.3 Auto Tuning Strategies

The polyhedral transformations optimize the schedule of a
program by abstracting away the underlying architectures,
making the performance far from the optimum in practice.
We address this problem using an auto-tuner to measure
the performance of divergent tiling strategies. The tuning
space for tensor computations is usually huge, we thus use
a machine learning guided sampling approach to reduce the
tuning space, with the steps summarized as follow.

AKG first computes a tuning space composed of the valid
tiling parameters constructed by the strategy introduced in
Sec. 4.2. A first round of random samples is then extracted
from the space, followed by the measurement of the per-
formance on each sample. These random samples are used
to train a machine learning model, which will generate a
second round of random samples. A second-round sample
is derived from one of the N best-performing samples of
the first round by moving a random step towards higher
performance in the learning model with probability p, or it
is sampled randomly over the entire tiling space of the first
round with probability 1 − p. The auto-tuner measures the
performance of each of the second round samples to update
the learning model. This will be repeated until the number
of sampling iterations reaches a pre-defined threshold or no
performance gain can be obtained.

In practice, N is specified (as 64 in the experiment) by the
developers, and the forwarding direction is determined by
the derivatives of each tuning iteration. p is a varying value
during the sampling iterations, which is computed using a
formula with a pre-defined parameter (set as 0.5) and ranges
from 0 to the exponential constant e . Our tuning strategy is
not meant to guarantee the optimal performance, but it can
usually find a better tiling strategy than the Auto Tiling in
Sec. 4.2 that minimizes data movement.

6 Evaluation

We implement our approach as an optimizer within a full-
stack, all-scenario AI computing framework, MindSpore [26],

to generate executable code on the Huawei Ascend 910 chip,
which can be used for both training and inference tasks of a
deep neural network. The algorithmic implementation can
be retrieved from https://gitee.com/mindspore/akg.

We compare the performance against manually optimized
low-level code (CCE opt) written by experts of the Ascend
chip. The software R&D team of the chip also adapted the
schedule primitives of TVM to the DaVinci architecture,
which we also take into account for comparison. The manual
schedule templates are fully optimized by TVM’s auto-tuner.

None of the enhancements of TVM [13, 72, 73] have been
integrated into MindSpore’s ecosystem; existing polyhedral
DL compilers like TC [62] did not perform optimizations for
an NPU. We thus do not compare with these techniques. We
consider single operators, fused subgraphs and end-to-end
networks as the benchmarks, with each version of the code
compiled with the native compiler of the chip using the same
set of compilation options for the fair comparison. The best
tile sizes of AKG are selected by Auto Tiling (Sec. 4.2), while
those of TVM are chosen by experienced experts and fully
tuned by its auto-tuner.

6.1 Performance of Single Operators

The single operators used in the experiment are those com-
monly used in real-life deep neural networks, including
convolution (op1), matrix multiplication (op2), ReLU (op3),
batched matrix multiplication (op4), cast (op5), transpose
(op6), one-hot (op7), tensor addition (op8), BatchNormed
training reduction (op9) and BatchNormed training update
(op10). We provide 10 shape configurations for each operator
using a batch size of 16, leading to 100 test cases in total.

We show the relative performance speedup normalized to
the execution cycles of our approach for each single oper-
ator in Fig. 9. To compute the normalized performance, we
record the execution cycles of each shape configuration and
compute their geometric mean. We also include the naïve
implementation of the CCE code on the Ascend chips as
a baseline, which is written by the experts without using
vendor libraries or performing optimizations.
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Figure 9. Performance of single operators (higher is better).

The optimized CCE code performs better than the naïve
implementation, improving the performance of the latter by
2.8× on average. Manual optimizations allow a developer to
wrap highly optimized libraries that can cooperate better
with the native compiler of the chip. An expert can use hard-
ware prefetching to overcome the ineffectiveness of double
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buffering exploited by AKGwhen handling scalars. However,
its high performance comes with the huge human efforts; it
also fails to scale with different shape configurations. The
code generated by our approach can achieve the performance
comparable to the vendor libraries with a mean loss within
4%. It demonstrates that AKG can reach the performance of
highly optimized libraries even for a single operator.
The developers of manual schedules also apply img2col

and fractal. However, writing manual schedule templates
suffers from the same problem of vendor libraries when
experimenting with multiple shape configurations. TVM can
outperform our approach under a small set of specific shape
configurations. As a fully automatic workflow, AKG only
allows manual padding before applying transformations. On
the contrary, one can perform padding optimizations along
with the manual scheduling process in TVM. Ineffective
padding may result in partial tiles that lose the benefit of
SIMD intrinsics. Modeling effective padding optimizations
in AKG is our future work. However, the performance of our
approach can provide a mean speedup of 1.6× over TVM.

AKG significantly reduces development efforts compared
to the optimized CCE code and TVM. Fig. 10 compares the
lines of code for three important single operators frequently
used in DL models. As shown in the figure, developing high-
performance vendor libraries always calls for a much higher
engineering cost. Besides, manual optimizations also make
it difficult to debug and it is not scalable to tensor shapes.
Writing manual schedule templates alleviates this issue but
it still requires much effort from the vendor developers. Con-
versely, AKG obtains performance comparable to or better
than that of vendor libraries using much fewer lines of code.
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Figure 10. Comparison of lines of code (lower is better).

To demonstrate the scalability of our approach under dif-
ferent shape configurations, we study the performance of
matrix multiplication since it is one of the most important
routines in many application domains. Moreover, our ap-
proach first transforms a convolution into GEMM product,
meaning that a convolution is also backed by the implemen-
tation of the latter. Evaluating GEMM product can thus also
reflect the effectiveness of convolution optimizations.
We use 41 different shape configurations to evaluate the

performance of the GEMM product. The shapes range from
(64,64) to (4608,4608) for each matrix. The number of exe-
cution cycles under each shape configuration is collected,
constituting the performance trend shown in Fig. 11. We

compare the performance with that of TVM, which also ex-
hibits a good scaling with the increasing number of shapes.
Our approach follows a similar fluctuation to that of TVM,
but the execution cycles of the code generated by AKG are
generally fewer under 29 out of the 41 configurations.
The performance differences between AKG and TVM is

due to the DAE synchronizations. The developers of the man-
ual scheduling approach also enhance the memory latency
hiding of TVM by considering dependences between hetero-
geneous compute units. However, their clustering strategy
of synchronizations is performed empirically, which cannot
always find an optimal grouping of synchronizations like the
dynamic programming policy in AKG. The reason why AKG

sometimes falls behind TVM is due to the constraints we put
on the searching strategy of our auto-tuner; our approach
can obtain better performance if the constraints are relaxed.
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Figure 11. Performance of GEMM product under different
shape configurations (1 µs = 103 cycles; lower is better).

6.2 Performance of Subgraphs

We next conduct experiment on five fused patterns covering
a variety of scenarios that can be found in widely used mod-
els including ResNet-50 [24], Bert [15] and MobileNets [25].
These subgraphs include a large class of single operators
like those introduced in Sec. 6.1 and some additional vector
operators. We report the performance of a single shape con-
figuration, which is listed in the rightmost two columns of
Table 1, for each subgraph. We also evaluate these subgraphs
using other shape configurations but did not see heavy per-
formance variances. Table 1 also summarizes the number of
operators for each subgraph.

Table 1. Summary of the subgraphs.

no. # of ops precision batch size input shape output shape

1 6 FP16 16 (16,16,512,512) (16,16,512,512)
2 21 FP16 16 (256,512,16,16) (256,512,16,16)
3 15 FP32 16 (30522,1024) (30522,1024)
4 11 FP32 16 (1024,1024) (1024,1024)
5 9 FP16 16 (64,1,16,16) (64,1,16,16)

We compare the performance of AKG with two baselines,
one is the manually optimized CCE code and the other is
the code generated by TVM. The vendor developers did not
provide the naïve implementation for subgraphs, and its
performance is thus missing. The result is shown in Fig. 12,
with the speedup normalized to the execution cycles of AKG.

Our approach performs best among the three versions for
each of the subgraphs; the code generated by AKG outper-
forms TVM and the manually optimized code by 1.3× and
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5.6× on average, respectively. TVM also provides a mean
speedup of 4.4× over the hand-written code by exploiting
the optimizations across operators, further demonstrating
the importance of developing tensor compilers.

sub
gra

ph1

sub
gra

ph2

sub
gra

ph3

sub
gra

ph4

sub
gra

ph5
0

0.5

1

N
o
m
al
.s
p
ee
d
u
p CCE opt TVM AKG

Figure 12. Performance of subgraphs (higher is better).

As explained in Sec. 6.1, writing manual schedules can also
model the domain-specific transformations designed for con-
volutions. An expert can thus achieve similar optimization
configurations for some of the benchmarks, resulting in the
comparable performance between TVM and AKG for three
subgraphs. However, the experience of an expert does not
apply to all fused patterns, e.g., subgraph1 and subgraph5,
for which AKG provides significant improvement over TVM.
These cases require the modeling of a complex tile shape
that is difficult to reason about using manual optimization,
which can create more opportunities for fusion and reduce
the amount of offloaded data. On the contrary, AKG imple-
ments it by resorting to the techniques introduced in Sec. 4.
The construction of complex tile shapes also involves loop
skewing and shifting that are not expressible in TVM, each
of which also contributes to the overall performance of sub-
graphs and end-to-end workloads as will be discussed in
Sec. 6.3, validating the importance of using a general poly-
hedral framework.

6.3 Performance of End-to-End Networks

We finally evaluate five end-to-end workloads, which are
composed of (1) three models for image classification in-
cluding ResNet-50 [24], MobileNet-v2 [25], AlextNet [39],
(2) the Bert [15] workload for language understanding, and
(3) SSD [45] for object detection in images. We record the
execution cycles of a single training epoch with batch size
16, and normalize the performance with respect to the result
of our approach. Fig. 13 depicts the result on these bench-
marks. Following the single operator and subgraph cases,
we still use two baselines for the comparison. We consider
two vocabulary sizes, 21,128 for the first version and 30,522
for the second, for the Bert model in the experiment.

Hundreds of engineers were involved in optimizing CCE
code on the Ascend chips, which is a huge cost for the indus-
try. Nonetheless, the optimized CCE code can only support
one end-to-end workload, i.e., ResNet-50, of those bench-
marks used in the experiment. On the other hand, generat-
ing code using a tensor compiler provides a more flexible
approach while achieving better performance even for the

ResNet-50 model: AKG and TVM bring about 7.6% and 7.7%
improvement over the optimized CCE code, respectively.
Our approach performs similarly to TVM for ResNet-50,

MobileNet and AlexNet, which are mainly composed of 2D
convolutions and similar fused patterns (like subgraph2 and
subgraph3 in Sec. 6.2) that are optimized extremely by both
AKG and TVM. However, AKG outperforms TVM when ex-
perimenting with (both versions of) Bert and SSD models.
The Bert workload is composed of multiple subgraphs

which consume most of the execution time. It is difficult
for an expert to find a good fusion configuration for each
subgraph by writing manual schedules. AKG suggests better
fusion configurations on more subgraphs using a system-
atic fusion heuristic. The schedule of SSD written by hand
have not yet exploited the SIMD hardware intrinstics due
to the large number of divergent vector operators in the
model, which also validates that AKG can obtain a better
performance within a much shorter period.
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Figure 13. Performance of DL models (higher is better).

Our results demonstrate that using polyhedral compilation
allows to approach or even exceed the performance achieved
by writing manual schedules. In summary, the overall im-
provement of AKG over TVM on these workloads is 20.2%.
Note that tens to hundreds of vendor developers are still
striving to optimize the manual schedule templates of TVM,
while the workflow of AKG is fully automated.

7 Related Work

Deep neural networks expressed using frameworks like Ten-
sorFlow [1], Pytorch [53] are typically represented as con-
nected subgraphs by compilers like XLA [41], TASO [31],
nGraph [14] and Glow [57] for the ease of graph-level op-
timizations. While high-level optimizations like kernel fu-
sion [12] and layout transformations [46] are considered
by these compilers, our work takes an orthogonal way by
studying operator-level optimizations, providing an effective
solution to code generation for custom NPUs.
Targeting the operator-level optimizations, a scheduling

language was introduced in Halide [55] to optimize image
processing pipelines and extended by TVM [12] to handle
tensor programs. Halide is followed by a variety of enhance-
ments [2, 42, 50] to optimize schedules automatically using
learning-based auto-tuners; AutoTVM [13], FlexTensor [73]
and Ansor [72] are used to reduce the human efforts required
by TVM. On the contrary, AKG provides a large set of trans-
formations thanks to the polyhedral schedulers. In addition,
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our work also implements a fully automated management of
memory promotion and synchronization for an NPU, which
is non-trivial for manual scheduling approaches.
The polyhedral model was also used by DL compilers in-

cluding TC [62], Tiramisu [4], Stripe [68] and Diesel [16];
they can perform loop transformations that are not accessible
in XLA [41] and Latte [61]. The followers [6, 22] of the Diesel
compiler support code generation for Tensor Cores of GPU,
while the recent work Rammer [47] considers the code gener-
ation for Graphcore IPU [32]. AKG further widens the set of
transformations by constructing arbitrary tile shapes, hierar-
chical fusion strategies and domain-specific transformations,
which are essential to exploit the memory hierarchy of an
NPU. There also exist polyhedral extensions [28, 29, 51, 69]
to Halide that only target CPU and/or GPU.
Almost all existing DL compilers rely on auto-tuning

techniques like OpenTuner [3] and Stock [58] to search
the optimal implementation variants of tensor programs.
High-performance libraries like BTO [5], FFTW [19] and AT-
LAS [66] also leverage auto-tuners. We use an auto-tuning
strategy in our work as a complementary optimization to
the polyhedral transformations. Our strategy to implement
tiling and fusion moderates the tuning overhead.

8 Conclusion and Discussion

Developing tensor compilers is an effective solution to ad-
dress the various weaknesses of existing DL frameworks.
Unlike traditional approaches that either rely on manual
schedules or leverage polyhedral compilation without ex-
tensions, we integrated the polyhedral model into the TVM
compiler to benefit from both sides. The AKG compiler pre-
sented in this paper implements a versatile polyhedral sched-
uler, followed by the combination of sophisticated tiling and
hierarchical fusion, and a sequence of domain-specific trans-
formations for optimizing convolutions. We also introduced
a learning-based auto-tuner, complementing the polyhedral
transformations using a fine-tuned searching strategy. The
experimental results show that the generated code of AKG,
which has been further optimized by the vectorization and
low-level synchronization, can achieve performance compa-
rable or superior to those of manually optimized approaches
while minimizing the programming effort of the users.

Ourwork uncovers the important components that have to
be considered when developing tensor compilers. As the red
parts shown in Fig. 2, effective scheduling is at the core of a
tensor compiler. In particular, one should carefully handle the
interplay between tiling and fusion which contributes most
to improving performance, as shown in Sec. 6. We partially
addressed this issue using the reverse strategy [70] but more
efforts are still in need. The reverse strategy and the intra-
tile rescheduling transformation are platform-neutral. The
fusion algorithm introduced in Sec. 4.3 when forking data
can also be adapted to other similer NPU architectures with

slight human efforts, though it is designed for the Ascend
910 in this work.

Another essential factor is the automatic implementation
of domain-specific transformations [21, 67, 71] for convolu-
tions, which have been addressed by AKG using schedule
trees. While the fractal tiling is specific for the Ascend 910
chips, the img2col transformation performed by grafting an
external schedule tree can be used as a general method. In ad-
dition, designing a productive IR is also important: it should
not only be used for representation, but also for deliver-
ing domain-specific knowledge and implementing program
transformations easily. Our extension to schedule trees and
MLIR [40] both target on these purposes.

The current state of AKG still shows some limitations, in
particular with respect to compilation time, tile shapes/sizes
and fusion strategies. AKG uses the isl scheduler [65] to
compute a new schedule. While improving the performance
of generated code, the ILP-based scheduling heuristics [9, 17]
of isl are infamous for their long compilation time, especially
in the case of multi-dimensional tensor computations.

We minimize the effect of solving ILP problems by tighten-
ing the range of feasible solutions using a fine-tuned combi-
nation of scheduling options, ensuring compilation time be
less than one minute for 99% scenarios and always less than
half an hour. On the contrary, an expert has to spend tens to
hundreds of hours to write a good schedule templates, or sev-
eral weeks to develop an optimized CCE code. Nonetheless,
it is still far from the expectation for a just-in-time compiler,
and we plan to optimize the scheduling process in the fu-
ture. The model-driven [10, 36] or dimension-clustering [54]
approaches may be interesting directions to follow.

The reverse policy proposed in [70], which is also adopted
byAKG, to determine the tile shapes and the follow-up fusion
strategies has shown its effectiveness, but it can only handle
forward convolutions since the approach starts by tiling a
live-out iteration space. Investigation on the composition
of tiling and fusion for backward convolutions is still an
ongoing research.

Finally, parametric tiling [23, 35] has not been integrated
into our work, which is a difficult and open issue to be solved
in the context of polyhedral compilation. We are now work-
ing on this topic to support more complex scenarios like
dynamic shaped tensors; this functionality will be released
soon.
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