互联网视频是怎样送进千家万户的

前些天同学聚餐,有人提了个问题:很多人同时看电视不卡,同时看网上的视频直播为什么就卡呢?电视是广播(跟收音机本质一样),而互联网视频走的是点对点的 IP 网络,多一个人看视频,服务器就要多发一份数据。

互联网视频究竟是怎样送到千家万户的呢?我从通信领域顶级学术会议 SIGCOMM 2013 里窃取了一些科普知识与大家分享。
继续阅读“互联网视频是怎样送进千家万户的”

从IP网络到内容网络

IP 足够了吗?

从初中的计算机课开始,我们就在学习计算机网络所谓的 “OSI七层模型”,记得当年死记硬背了一大堆概念。那些烂课本毁了多少计算机天才,其实这个模型并不难理解:(学过计算机网络的请自行跳过)

  1. 物理层:就是信号传输的媒介,光纤、双绞线(我们常用的网线)、空气(wifi)……每种介质都需要自己的编码和调制方式,才能把数据变成电磁波送出去。
  2. 数据链路层:拿开会打个比方。说话可能不小心说错或者听错,需要有纠错、让对方重说的机制(校验和、重传);几个人都想发言,需要有一种方式进行仲裁,谁先说谁后说(信道分配、载波监听);一个人发言前后需要示意,以便让别人知道他说完了(成帧)。
  3. 网络层:这是计算机网络初期争议最大的地方。电信行业的传统巨头认为,应该像打电话一样在两端点间的路径上预留出一部分带宽,建立起通信双方的 “虚电路”。而当时正处于冷战时期,美国国防部要求建立起的网络在中间几条线路遭到毁灭性打击时,通信仍然不能中断。于是,最终采用了 “分组交换” 方案,把数据分成若干小块分别封装和投递。就像寄信一样,要投递到远方的机器,就要在信封上写明地址,而且地址要使得邮递员看到它就知道该走哪条路送给下级邮局(比如用身份证号作为地址就是个很糟的主意)。IP 协议是网络层协议的事实标准,大家应该都知道 IP 地址。
  4. 传输层:计算机网络早期最重要的应用就是在两台计算机间建立“连接”:远程登录、远程打印、远程访问文件……传输层就是在网络层数据包的基础上,抽象出连接的概念。这里的“连接”跟“虚电路”的主要区别是“虚电路”要预留一定的带宽,而“连接”是尽力而为投递的,不对带宽作任何保证。由于互联网上的流量多是突发(burst)的,分组交换比虚电路提高了资源利用率。事实上,历史往往是轮回的,如今在数据中心里,由于流量可预测且可控,又正在回到中心控制的预留带宽方案。
  5. 应用层:这就不用多说了,Web 基于的 HTTP、FTP、BitTorrent 都是应用层协议。

ccn-0
继续阅读“从IP网络到内容网络”

揭秘Google数据中心网络

导读:这是“走进 SIGCOMM 2013”系列的第二篇。Google 首次将其数据中心广域网 (WAN) 的设计和三年部署经验完整地公之于众,这篇论文可能被评为 Best Paper。为什么 Google 要用 Software Defined Networking (SDN)?如何把 SDN 渐进地部署到现有的数据中心?透过论文,我们能窥见 Google 全球数据中心网络的冰山一角。

b4-1

带宽的巨大浪费

众所周知,网络流量总有高峰和低谷,高峰流量可达平均流量的 2~3 倍。为了保证高峰期的带宽需求,只好预先购买大量的带宽和价格高昂的高端路由设备,而平均用量只有 30%~40%。这大大提高了数据中心的成本。

继续阅读“揭秘Google数据中心网络”

不需要电源的 RFID 通信

作者按:从今天起,本博客将陆续推出一系列文章,走进即将举行的通信领域顶级学术会议 SIGCOMM 2013,看看世界各地的 Wireless & Networking 研究者们都在做什么。尽管这些看起来很 fancy 的设计在生产环境中有可能完全不 work,但它们至少给我们提出了一些可能的方向。

Ambient Backscatter: Wireless Communication Out of Thin Air

从空间吸收能量并用作电源,这听起来是不是很疯狂?华盛顿大学研究团队制作了不需要电源的 RFID 卡,可以从每个城市都有的 TV Tower 获取能量用于支持传感器和单片机工作,并反射 TV Tower 射频信号的能量,实现两个相距不超过 50~75 厘米的 RFID 卡之间的自主通信,通信速度可达 1kbps。套用一句广告词,就是 “我们不生产信号,我们只是电视信号的搬运工”。

ambient-2
继续阅读“不需要电源的 RFID 通信”