
FastWake: Revisiting Host Network
Stack for Interrupt-mode RDMA

Bojie Li1 Zihao Xiang1 Xiaoliang Wang2

Han Ruan1 Jingbin Zhou1 Kun Tan1

1Huawei 2Nanjing University

Presenter: Bojie Li, Computer Network and Protocol Lab, Huawei

Interrupt-mode RDMA wastes the low
latency of NICs

Emergence of Microsecond Events

LUIZ BARROSO, MIKE MARTY, DAVID PATTERSON, AND PARTHASARATHY RANGANATHAN,
Attack of the Killer Microseconds, Communications of the ACM, 2017.

Why microsecond-scale latencies are hard to hide

CPU Instruction Pipeline OS Process Scheduling

• Nanosecond-scale latencies can be hidden
by CPU out-of-order execution pipeline.

• Example: DRAM access takes 50~100 ns,
where the CPU core can execute
independent instructions after the DRAM
access.

• CPU out-of-order pipeline only supports
hundreds of instructions, so microsecond-
scale latencies would stall the pipeline and
decrease the efficiency of CPU.

• OS process scheduling is designed to hide
millisecond-scale latencies.

• Context switching to another process takes 3~5us.
• RDMA Read takes only 2~3us.
• If we context switch to another process after

sending the RDMA Read request, and switch back
after receiving the RDMA response, then the CPU is
wasted on process scheduling.

Task 1

a = *p; // memory access
b = c + d;
e = b + c;
d = b + d;
c = b + c;
f = b + a; // stall for memory access

Out-of-order execution

Traditional TCP

TCP send

Task 2 Task 3

TCP recv

context switch

context switch

Task 1

RDMA Read

Task 2 Task 3

RDMA Read response
context switch

context switch

RDMA

Why interrupt-mode RDMA has high latency?

RDMA NIC

App Thread

C
Q
1

Kernel

E
Q

interrupt

Interrupt
handler

Context switch

①

②③

④

⑨

Tasklet Scheduler⑤

⑧

Inter-Processor
Interrupt⑥

⑦

• CQ: Completion Queue.
• Each CQ has a completion vector, which

determines the CPU cores to deliver interrupts
• EQ: Event Queue for interrupt notification.

• A completion vector corresponds to an EQ in
kernel-mode host memory.

• EQ entries contain CQ numbers to notify.

• ①②③ NIC: 1.5 us
• ④⑤⑦ kernel (same core): 2.2 us
• ④⑤⑥⑦ kernel (different cores): 6.9 us
• ⑧ context switch: 0.3 us

Key Observation 1
• Direct context switch is much faster than process scheduling.
• Mutex and semaphore are IPC primitives provided by the kernel that

achieves context switch by process scheduling.

0.32
3.29

3.96
7.39

7.82

0 2 4 6 8 10

Context switch
Semaphore IPC (same core)

Pipe IPC (same core)
Semaphore IPC (other core)

Pipe IPC (other core)

while (true) {
sched_yield();

}

while (true) {
sched_yield();

}

Thread 1 Thread 2

Kernel (context switch)

Context switch Mutex/Semaphore

while (true) {
lock(&g_mutex);
unlock(&g_mutex);

}

Thread 1 Thread 2

Kernel (thread scheduling)

while (true) {
lock(&g_mutex);
unlock(&g_mutex);

}

Approach 1: per-core dispatcher thread

RDMA NIC

App Thread
1

App Thread
2

Dispatcher
Thread

C
Q
1

C
Q
2

Kernel context switch

Peek CQE Peek CQE

①

②

③
④

The CQ is mapped to both application thread and a
per-core dispatcher thread.

1. NIC sends CQE to the CQ.
2. Dispatcher thread polls all CQs on the core and

peeks CQE from the CQ, but do not pop it out
of CQ.

3. Dispatcher thread context switches to the
application thread directly.

4. The application thread pops the CQE out of CQ.
5. When the application waits on the next event, it

context switches back to the dispatcher thread.
⑤

How to implement direct context switch?

• Linux does not support context switching to a specific thread.
• We introduce a new system call switch_to(pid)

• Simply checks the permission and puts the thread pid to the head of runqueue.
• Performance: 0.3~0.4 us.

• Security:
• To avoid switch_to(pid) being abused to starve other threads, we only allow non-

dispatcher threads to switch to dispatcher threads and only allow dispatcher threads to
switch to non-dispatcher threads.
• We introduce a flag bit in the process control block to indicate whether it is a dispatcher thread.

• Limitations:
• Direct context switch makes application threads have high priority than other threads

with the same priority. However, because each priority has its own runqueue, threads
with higher priority still takes precedence.

Key Observation 2

• Interrupt delivery to a thread running on the same core is much
faster than other cores.
• Reason: inter-processor interrupts (IPI) to wake up another core.

Approach 2: interrupt core affinity &
shorten kernel path
• How to make sure interrupts and the thread are on the same core?

CQ1

CQ3

Thread 1

Thread 3

EQ1
create_cq(..., comp_vector=1)

create_cq(..., comp_vector=2)

Thread 2 CQ2
Core 1

Core 2

create_cq(..., comp_vector=1)

CQ4Thread 4

create_cq(..., comp_vector=2)

EQ2

RDMA
NIC

EQEs including
CQ numbers

EQEs including
CQ numbers

MSIX
interrupt

Completion vectors

Core 1
ISR

Core 2
ISR

Wake up threads

Wake up threads

Approach 2: interrupt core affinity &
shorten kernel path
• What if the creator of the CQ and the user of the CQ are in

different threads and on different cores?
• What if a thread migrates to another core?
• We need to dynamically update the affinity between CQs and EQs.

• We leverage a feature in Mellanox NICs: CQ-to-EQ remapping.
• The remapping is done lazily when the interrupt handler finds the

thread to wake up is not on the same core.

Approach 2: interrupt core affinity &
shorten kernel path

CQ1

CQ1

Thread 1

Thread 1’

EQ1
create_cq(..., comp_vector=1)

modify_cq(..., comp_vector=2)

Core 1

Core 2

EQ2

RDMA
NIC

EQEs including
CQ numbers

EQEs including
CQ numbers

MSIX
interrupt

Completion vectors

Core 1
ISR

Core 2
ISR

Inter-processor
interrupt (IPI)

Wake up thread

• Do CQ-to-EQ remapping when interrupt and thread are on different cores.

Thread migration

Approach 2: interrupt core affinity &
shorten kernel path

RDMA NIC

App Thread

C
Q
1

Kernel

E
Q

interrupt

Interrupt handler

Context switch

①

②③

④

⑤

⑥

RDMA NIC

App Thread

C
Q
1

Kernel

E
Q

interrupt

Interrupt
handler

Context switch

①

②③

④

⑨

Tasklet Scheduler⑤

⑧

Inter-Processor
Interrupt⑥

⑦

Compared to traditional interrupt delivery path:
1. Remove tasklet and handle interrupts in top half.

• Top-half cannot use locks and dynamically allocated
memory that may lead to sleep, so we remove them.

2. Directly put the thread to wake up at the head of
the runqueue, bypassing the kernel scheduler.

3. Other minor optimizations (see the paper).

FastWake system architecture

RDMA NIC

Application
FastWake
shim layer

libibverbs

FastWake
daemon

Kernel ib_uverbs/core
switch_to()

syscall CQ-EQ remap

Comp channel

Per-core
polling threads

• Compatible with existing RDMA
applications.
• Only need an LD_PRELOAD library

as a shim layer.
• Compatible with existing OS.

• Update OFED kernel modules to
shorten thread wake-up path and
implement CQ-to-EQ remapping.

• Add a switch_to(pid) system call for
direct context switch.

• Compatible with existing RDMA NIC
hardware.

Evaluation – Latency (x86)

Dispatcher approach: reduce RDMA latency by 65%~83% on x86 at the cost of high power utilization.
Interrupt approach: reduce RDMA latency by 26%~64% on x86.

Evaluation – Latency (ARM)

Dispatcher approach: reduce RDMA latency by 64%~78% on ARM at the cost of high power utilization.
Interrupt approach: reduce RDMA latency by 25%~54% on ARM.

Comparing dispatcher and interrupt approaches
of FastWake

FastWake can also reduce IPC latency

IPC = Inter-Process
Communication

Conclusion
• Data center networking and storage hardware are entering an age of

microsecond-scale latency.
• Current CPU hardware and OS cannot hide this latency.

• FastWake proposes two approaches with commodity NIC, OS and
applications:
• Observation 1 – context switch is much faster than process scheduling.

• Solution 1 – build a per-core dispatcher thread and fast context switch to fully remove
the interrupt overheads.
• Reduce RDMA latency by 65%~83% on x86 and 64%~78% on ARM.
• Only 0.4us (20%) higher than polling mode.

• Observation 2 – interrupt core affinity is crucial for performance.
• Solution 2 – a power-saving approach to reduce interrupt latency by ensuring interrupt

core affinity and shortening kernel path.
• Reduce RDMA latency by 26%~64% on x86 and 25%~54% on ARM.

• We expect future work to evaluate FastWake on real applications.
• “The Killer Microseconds” is still an open problem.

Thanks!
Q&A

Welcome to join/collaborate with Computer and Network Protocol Lab, Huawei.

