
FastWake: Revisiting Host Network Stack for
Interrupt-mode RDMA

Bojie Li1 Zihao Xiang1 Xiaoliang Wang2 Han Ruan1 Jingbin Zhou1 Kun Tan1
1Huawei 2Nanjing University

ABSTRACT
Polling and interrupt has long been a trade-off in RDMA systems.
Polling has lower latency but each CPU core can only run one
thread. Interrupt enables time sharing among multiple threads but
has higher latency. Many applications such as databases have hun-
dreds of threads, which is much larger than the number of cores.
So, they have to use interrupt mode to share cores among threads,
and the resulting RDMA latency is much higher than the hard-
ware limits. In this paper, we analyze the root cause of high costs
in RDMA interrupt delivery, and present FastWake, a practical
redesign of interrupt-mode RDMA host network stack using com-
modity RDMA hardware, Linux OS, and unmodified applications.
Our first approach to fast thread wake-up completely removes in-
terrupts. We design a per-core dispatcher thread to poll all the
completion queues of the application threads on the same core,
and utilize a kernel fast path to context switch to the thread with
an incoming completion event. The approach above would keep
CPUs running at 100% utilization, so we design an interrupt-based
approach for scenarios with power constraints. Observing that wak-
ing up a thread on the same core as the interrupt is much faster than
threads on other cores, we dynamically adjust RDMA event queue
mappings to improve interrupt core affinity. In addition, we revisit
the kernel path of thread wake-up, and remove the overheads in
virtual file system (VFS), locking, and process scheduling. Experi-
ments show that FastWake can reduce RDMA latency by 80% on
x86 and 77% on ARM at the cost of < 30% higher power utilization
than traditional interrupts, and the latency is only 0.3∼0.4 `s higher
than the limits of underlying hardware. When power saving is de-
sired, our interrupt-based approach can still reduce interrupt-mode
RDMA latency by 59% on x86 and 52% on ARM.

CCS CONCEPTS
• Networks→ Data center networks.

KEYWORDS
RDMA, Host Network Stack, Interrupt, Context Switch
ACM Reference Format:
Bojie Li1 Zihao Xiang1 Xiaoliang Wang2 Han Ruan1 Jingbin
Zhou1 Kun Tan1 and 1Huawei 2Nanjing University . 2023. FastWake:
RevisitingHost Network Stack for Interrupt-mode RDMA. In 7th Asia-Pacific

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APNET 2023, June 29–30, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0782-7/23/06. . . $15.00
https://doi.org/10.1145/3600061.3600063

Workshop on Networking (APNET 2023), June 29–30, 2023, Hong Kong, China.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3600061.3600063

1 INTRODUCTION
High-performance data center systems [3, 18, 36, 37] typically use
polling to reduce latency and improve throughput, where each CPU
core runs only one thread. However, many applications such as
databases [11, 16, 22, 34] and web services [19, 23] often have more
threads than CPU cores because they use a synchronous program-
ming model. Rewriting these applications to a fully asynchronous
model would require unaffordable development efforts. To enable
time sharing of CPU cores among multiple threads, applications
have to use interrupt mode, which would introduce 6∼10 `s extra
delay to deliver the interrupt from the NIC hardware and wake up
the thread. In comparison, the latency to access remote memory in
RDMA is only 1.6 `s [26], so, the interrupt mode latency is 5∼7x of
polling mode. Researchers have referred to this challenge as “the
killer microseconds” [13].

The killer microseconds did not attract much attention in the age
of traditional TCP/IP stacks and SSDs because they have > 20 `s
latency, where thread wake-up only contributes a small portion.
However, the advent of low-latency RDMA networking and fast
storage hardware changes the story. To avoid wasting the low la-
tency of RDMA hardware, the interrupt delivery path in host RDMA
stack needs a complete revisit. Our goal is to redesign the host
RDMA stack to efficiently support microsecond-scale I/O events
with commodity hardware, Linux OS, and unmodified applications.

We analyze the overheads of host RDMA stack in interrupt mode
through measurement. Our study reveals that interrupt core affinity
is important for interrupt delivery latency. After RDMA NIC de-
livers the data, it triggers an interrupt to a core and the interrupt
handler wakes up a thread, which only needs 4 `s on the same
core while requiring 7∼10 `s on another core. However, RDMA by
default delivers interrupts to a random core, so there is low chance
that the thread to wake up runs on the same core. Consequently,
most interrupts involve the long delay for the interrupt handler to
wake up a thread on another core. Executing interrupt handlers on
a same core also limits multi-core throughput. Even if an interrupt
wakes up a thread on the same core, the overhead is still significant
because the NIC needs to generate events and trigger interrupts,
and then the kernel spends time in tasklet, process scheduling, and
context switch when waking up a thread.

Our solution, FastWake, is composed of two practical approaches:
one completely removes interrupts but has higher power consump-
tion, and the other greatly reduces interrupt latency without in-
creasing power footprint. The system manager can divide the cores
into the two approaches to balance latency and power utilization.

Our first approach completely avoid the interrupt overheads
while still enabling multiple threads to share a CPU core. The

https://doi.org/10.1145/3600061.3600063
https://doi.org/10.1145/3600061.3600063

APNET 2023, June 29–30, 2023, Hong Kong, China Bojie Li, Zihao Xiang, Xiaoliang Wang, Han Ruan, Jingbin Zhou, and Kun Tan

dilemma of polling and interrupt arises from the fact that multiple
threads cannot poll simultaneously on the same core. We design a
per-core dispatcher thread to poll the CQs of all threads on the same
core, and context switch to the corresponding application thread
when a completion event arrives. When the application thread com-
pletes processing and waits for the next event, it context switches
back to the daemon thread to dispatch a next event. We build a
kernel fast path to make context switching (0.3∼0.4 `s) much faster
than interrupt (3∼4 `s) even if the interrupt is on the same core.
This approach would keep CPU cores running at 100% utilization,
but the latency is almost as low as polling mode.

When high power consumption is not allowed, we have to stick
with the interrupts. Our second approach spreads NIC interrupts
to different cores and makes use of completion vector to ensure
interrupt core affinity. When a thread is rescheduled to a different
core or the thread that polls CQ events alters, we leverage a less-
known feature of RDMA NICs to dynamically adjust the mapping
from CQ to event queue, so as to maintain interrupt core affinity. In
addition, we shorten the kernel path of threadwake-up by removing
the overheads in tasklet, locking, and process scheduling.

FastWake is fully compatible with existing RDMA applications,
e.g., perftest [8]. Experiments show that with 16 threads sharing a
core, FastWake can reduce end-to-end RDMA latency by 65%∼83%
(80% on average) on x86 and 64%∼78% (77% on average) on ARM
at the cost of up to 30% higher power utilization compared to
traditional interrupt-mode RDMA. The resulting latency is only
0.3∼0.4 `s higher than polling mode where each thread has its dedi-
cated core. In scenarios with power constraints, our interrupt-based
approach can still reduce end-to-end RDMA latency by 26%∼64%
(59% on average) on x86 and 25%∼54% (52% on average) on ARM.
As a side product, FastWake also provides new IPC primitives for
fast thread wake-up. The latency of standard semaphore and pipe
IPC is 3x∼10x of FastWake IPC.

In summary, this work makes the following contributions:
(1) An analysis of the high latency in interrupt-mode RDMA

revealing the importance of interrupt core affinity.
(2) An approach that introduces a per-core dispatcher thread

and fast context switching to fully remove the interrupt
overheads.

(3) An power-saving approach that significantly reduces inter-
rupt latency by ensuring interrupt core affinity and shorten-
ing the kernel path.

(4) A system, FastWake, that implements the two approaches
and is compatible with existing RDMA applications.

2 BACKGROUND
2.1 The Latency Hiding Problem
Many applications have more threads than CPU cores. For example,
relational databases [11, 16, 22, 32, 34] have one thread per concur-
rent SQL query. Due to the I/O latency to access the permanent
storage, the number of threads need to be larger than the number
of CPU cores to fully utilize the computation power. For another
example, many web service frameworks like J2EE [23], Python
Flask [19], Python Django [21], Ruby on Rails [12], and PHP [9] use
a multi-threaded programming model where each thread processes
HTTP requests synchronously. As [13] points out, “synchronous

0.32

1.6

5.7

9

10.3

11.8

0 2 4 6 8 10 12 14

Context switch

Polling RDMA

Interrupt RDMA (same core)

Interrupt RDMA (same NUMA)

Interrupt RDMA (average)

Interrupt RDMA (other NUMA)

Figure 1: Latency (`s) comparison of RDMA in polling and
interrupt modes on an x86 platform.

programming leads to code that is shorter, easier-to-understand,
more maintainable, and potentially more efficient”. To fully utilize
all CPU cores, multiple threads need to share a CPU core because the
web applicationmay need to wait for other microservices, databases
or file storage during the processing of an HTTP request.

Utilizing Remote Direct Memory Access (RDMA) efficiently for
these multi-threaded applications has long been a challenge [13]
because polling mode cannot share a CPU core among multiple
threads, while interrupt mode involves significant latency that
undermines the low latency of RDMA. For example, RDMA Read in
interrupt mode takes 10∼13 `s while polling mode only takes 3 `s.
Some may argue that busy polling until completion of the RDMA
Read can resolve this problem. However, 95% of communication in
data centers are RPCs [27] rather than one-sided RDMA. RPCs to
other microservices and databases may take tens to thousands of `s,
where busy polling wastes significant CPU resources. In addition,
worker threads in databases and web services wait for incoming
tasks which cannot be implemented with polling when multiple
workers share a core.

Hiding this microsecond-scale latency has been a research focus
for both programming language, operating system, and computer
architecture communities. PL solutions include coroutines [24] for
C/C++, and native concurrent programming abstractions in Go,
Erlang, and Node.js. Coroutines typically have restrictions on the
stack depth [2] and need to rewrite blocking OS APIs to coroutine
APIs. As a result, it is hard to rewrite complicated applications such
as databases with coroutines. Although goroutines [17], Erlang
functions [40], and continuation passing style in Node.js [39] can
exploit intra-thread concurrency elegantly, they cannot be applied
to the popular web frameworks in other languages. OS solutions
reduce microkernels that reduce the IPC overhead by accelerat-
ing context switches and bypassing the scheduler, such as L4 [20]
and seL4 [28]; or leveraging hardware virtualization such as Sky-
bridge [33] and Shinjuku [25]. However, these works target IPC
and cannot reduce interrupt delivery latency. New hardware archi-
tectures support fast context switching at the cost of single thread
performance [10, 38], or support more SMT threads per core [13].
However, these new hardwares are not readily deployable.

2.2 RDMA in Interrupt Mode
In RDMA, each QP (analogous to a connection) is associated with a
CQ (Completion Queue). An RDMA NIC generates a CQE (Comple-
tion Queue Event) when a send/recv/read/write/atomic operation
completes. When a CQ is created, it is associated with a Completion
Vector1 which determines to which CPU cores the NIC delivers
interrupts. Each completion vector is implemented as an EQ (Event
1Although completion vector is named as “vector”, it is a scalar value.

FastWake: Revisiting Host Network Stack for Interrupt-mode RDMA APNET 2023, June 29–30, 2023, Hong Kong, China

RDMA NIC

App Thread 1 App Thread 2

C
Q
1

C
Q
2

Kernel

E
Q

interrupt

Interrupt
handler

Context switch

①

②③

④

⑨

Tasklet Scheduler⑤

⑧

Inter-Processor
Interrupt⑥

⑦

Figure 2: Traditional interrupt delivery
path in RDMA, taking significant time in
the delivery of NIC event queue entries
and interrupts, IPI, tasklet, and thread
scheduler.

RDMA NIC

App
Thread 1

App
Thread 2

Polling
Thread

C
Q
1

C
Q
2

Kernel context switch

Peek CQE Peek CQE

①

②

③

④

Figure 3: FastWake approach 1: per-core
dispatcher thread, which polls all CQs of
application threads running on the core
and wakes up threads via fast context
switch.

RDMA NIC

App
Thread 1

App
Thread 2

C
Q
1

C
Q
2

Kernel

E
Q

interrupt

Interrupt handler

Context switch

①

②③

④

⑤

⑥

Figure 4: FastWake approach 2: fast inter-
rupt delivery, which still uses NIC inter-
rupts but removes IPI by ensuring inter-
rupt core affinity and shortens interrupt
delivery path.

Queue) in the kernel mode host memory. When interrupt is enabled
for a CQ, as shown in Figure 2, the NIC first delivers a CQE to the
CQ, then generates an EQE (Event Queue Entry) to the correspond-
ing EQ, and then triggers the interrupt. The EQE carries the CQ
number information so that multiple CQs can share an EQ. Writing
the EQE into host memory and triggering the interrupt consumes
∼1.5 `s. Each completion vector has an IRQ affinity mask, which is
a bitmap of cores. When the CPU hardware receives the interrupt,
it dispatches the interrupt to one of its cores specified by the IRQ
affinity mask of the completion vector. Modern RDMA NICs sup-
port 64∼128 completion vectors [6, 7], but many applications only
use the default completion vector. The default IRQ affinity mask
contains a large number of CPU cores, so the interrupts are spread
to the cores randomly, resulting in poor interrupt core affinity.

When a CQ is created, it is also associated with a Completion
Channel, which works in pure software to enable applications wait
on multiple CQs associated with the completion channel. A thread
waits on a completion channel via ibv_get_cq_event(), analogous
to epoll_wait() in Linux. When an interrupt is dispatched to a CPU
core, the interrupt handler in the top half polls the EQ to get an
EQE containing the CQ number, and creates a tasklet to continue
the remaining thread wake-up procedure asynchronously. In the
tasklet, the kernel finds the completion channel associated with
the CQ, and wakes up a thread waiting on the completion channel.
This thread wake-up procedure in kernel takes ∼2.5 `s when the
thread is on the same core as interrupt handler. If the thread is on
a different core, the kernel uses Inter-Processor Interrupt (IPI) to
wake up the thread, which takes an additional 3∼6 `s compared to
same-core wake-up.

This leads to our first observation: interrupt delivery to a thread
running on the same core is much faster than other cores. The thread
wake-up latency, defined as the difference between RDMA Read
latencies of interrupt mode and polling mode, is only 4 `s on the
same core, 7 `s on other cores of the same NUMA node, and 10 `s on
another NUMA node (see Figure 1). Making good use of interrupt
core affinity is essential for low latency interrupt delivery.

To push latency to the limit, we make a second observation:
context switching is much faster than interrupt delivery. As Figure 1

shows, with two threads context switching to each other using
sched_yield(), a context switch only requires 0.32 `s in our x86
testbed. This is the fastest context switching path in mainline ker-
nel as a system call already requires 0.2 `s [30] after applying the
patches for Meltdown [31] and Spectre [29] vulnerabilities. In com-
parison, delivering an interrupt and waking up a thread requires
3∼10 `s, and IPC via mutex or semaphore also takes 3∼5 `s. The
large latency gap is mainly due to the interrupt handlers, kernel
scheduler, and virtual file system (VFS) for IPC. If each core can poll
the CQs directly and context switch to the thread that waits on the
CQ, it would eliminate the latency of EQE and interrupt generation,
as well as the latency of thread wake-up in the kernel.

3 DESIGN
FastWake is designed to be a practical system that works with
commodity hardware and Linux OS, without modifications to existing
RDMA applications.

FastWake has two orthogonal approaches to reduce the inter-
rupt latency of unmodified RDMA applications, as illustrated in
Figure 3 and 4 respectively. The first approach uses per-core dis-
patcher threads to achieve minimal latency at the cost of high CPU
utilization. The second approach, fast interrupt delivery, is power
saving as it keeps using NIC interrupts to wake up the threads
while significantly reducing the latency by improving interrupt
core affinity and shortening the kernel path. A system manager
can configure which cores use the polling thread approach and
the others use fast interrupt delivery. The system manager can use
standard taskset tool to assign core affinity of applications, and
therefore choosing between the two approaches.

3.1 Per-core Dispatcher Thread
The first approach makes use of the second observation that context
switching is much faster than interrupt delivery. Consider multiple
application threads (which may belong to one or more processes)
running on a same core, each of which waiting on completion
events from a set of CQs. We aim to disable interrupts on the CQs
and let the threads context switch to another thread with pending
event. However, it is insecure to allow an application thread to peek

APNET 2023, June 29–30, 2023, Hong Kong, China Bojie Li, Zihao Xiang, Xiaoliang Wang, Han Ruan, Jingbin Zhou, and Kun Tan

the CQEs of other applications. For security, we build a privileged
dispatcher thread that polls all the CQs of the threads on the core
in a round-robin manner. When the dispatcher polls a completion
event (i.e., CQE), it context switches to the corresponding thread of
the CQ. When the application thread completes processing of the
event, it waits for another completion event via ibv_get_cq_event(),
and the FastWake library context switches back to the dispatcher
thread to handle the next event.

A challenge is that the Linux kernel does not support fast con-
text switching to a specific thread. Existing IPC pritimives such
as semaphore and pipe have latency as high as 3∼7 `s, which is
10x∼20x slower than a context switch. To this end, we design a new
system call switch_to(pid) to perform the context switch without
involving the kernel scheduler. The system call simply saves the
context of the current thread, puts the current thread into inter-
ruptible state, and loads the context of the target thread, so it only
takes 0.3∼0.4 `s. Because an application thread may be resched-
uled to another core, we check whether the thread is still in the
waitqueue of the current core before switching to it. If the thread
is rescheduled to another core, the switch_to() system call returns
failure to the dispatcher thread, and then it transfers the CQs to
the dispatcher thread of the new core where the thread runs.

The per-core dispatcher threads run in a daemon process. When
an application creates a CQ, its memory is remapped to the daemon
process so that the dispatcher thread can poll the CQ. The dispatcher
thread only peeks the CQE but does not pop the CQE out of the CQ.
The application thread polls the CQs as usual and pops the CQE
out of the CQ. As an optimization, an application may poll all CQs
and process all CQEs before switching back to the dispatcher, so
the context switch overhead is amortized under heavy workload.

This approach only adds 0.4 `s latency to the 1.6 `s round-trip
time of RDMA. However, the cost is that the CPUs run at 100%
utilization. When the application threads are idle, the core is busy
with the dispatcher thread which polls the CQs. The dispatcher
thread has lower priority than the application threads, so, if an
OS event (e.g., read completion of the file system or the release of
a mutex lock) wakes up an application thread or an application
thread is busy with computation tasks, the dispatcher thread will
relinquish the CPU for the application.

The switch_to() system call may be abused to bypass kernel
scheduling and starve other threads on the same core. So, we re-
strict the use of switch_to() by introducing a flag bit in the process
control block to indicate whether it is a dispatcher thread. Non-
dispatcher threads can only switch to dispatcher threads, and dis-
patcher threads can only switch to non-dispatcher threads. The flag
bit can only be set via a root-only ioctl() interface.

3.2 Fast Interrupt Delivery
3.2.1 Interrupt Core Affinity. The second approach is designed for
cases where busy polling is not allowed due to power constraints.
It is based on the observation that waking up a thread on the
same core as interrupt delivery is much faster than other cores.
However, ensuring interrupt core affinity is not a simple task. The
associativity between CQ and completion vector is determined
when the CQ is created, and the completion vector determines
which cores the interrupts would deliver to.

A strawman approach would be representing each CPU core
with a completion vector and assigning the completion vector to
the current core during CQ creation. More concretely, during sys-
tem initialization, we configure the IRQ affinity mask so that each
completion vector corresponds to one CPU core. As modern RDMA
NICs support 64∼128 completion vectors [6, 7], all CPU cores can
be utilized. When a CQ is created, its completion vector is set to
the CPU core it is running on. So, when the application polls on
the CQ, the interrupt is delivered to the same core, resulting in low
thread wake-up delay.

However, in a multi-threaded application, the thread creating
the CQ may not be the thread polling the CQ, which is common
where the main thread creates the CQ on the control plane and a
worker thread polls the CQ on the data plane. In addition, a thread
may be rescheduled to another core due to load imbalance among
the cores, invalidating the interrupt core affinity.

Our approach leverages a lesser-known feature of commodity
RDMA NICs: CQ-to-EQ remapping [1]. It enables dynamic updates
to the completion vector of a CQ in the NIC. When the FastWake
kernel module finds that the application thread is on a different
core, it issues a CQ-to-EQ remapping command to the NIC. As a
result, future interrupts for this CQ will be delivered to the new
CPU core. We do not need to synchronize the CQ-to-EQ mapping
strictly between the CPU and NIC because inconsistent mapping
only results in temporarily longer delay of interrupts. Because CQ-
to-EQ remapping simply updates one field in the CQ context of the
NIC [1], it only takes 1 `s to notify the NIC. So, the penalty of an
incorrect CQ-to-EQ mapping is the interrupt mode delay plus 1 `s
for CQ-to-EQ remapping.

The number of CQ-to-EQ remappings would not exceed the
number of CQ polling core migrations multiplied by the number
of CQs. CQ polling core migrations have two sources: 1) different
threads polling one CQ and 2) thread migration by the kernel sched-
uler. First, because CQs are protected by locks, high performance
applications typically do not share CQs among multiple threads,
otherwise lock contention would be a more prominent problem.
Second, today’s schedulers only migrate threads among cores at
coarse granularity (e.g., every 4 ms for Linux) [35]. As a result, most
completion events would have interrupt core affinity while thread
migration has low penalty.

3.2.2 Shortening the Interrupt Delivery Path. As Sec.2 discussed,
delivering an interrupt takes a long path in both hardware and
software. The hardware overhead of delivering the EQE and the
interrupt cannot be reduced with commodity hardware. However,
we can simplify the interrupt delivery path in the kernel. The asyn-
chronous tasklet mechanism aims to prevent long interrupt delivery
path in the top half from blocking future interrupts to the CPU
core. More importantly, code in the top half cannot use certain
types of locks [15], while the wait queue of completion channel
needs such locks. Our approach eliminates the tasklet scheduling
latency by delivering the interrupt completely in top half. First,
temporarily blocking interrupts to the core would not lead to loss
of events because the interrupt is only a trigger and the events
(i.e., CQ numbers) are contained in the EQ. Second, our approach
simplifies the in-kernel data structure of the completion channel to
remove the locks.

FastWake: Revisiting Host Network Stack for Interrupt-mode RDMA APNET 2023, June 29–30, 2023, Hong Kong, China

RDMA NIC

Application

FastWake
shim layer

libibverbs

FastWake
daemon

Kernel
ib_uverbs/core

switch_to()
syscall

CQ-EQ remap

Comp channel

Per-core
polling threads

Figure 5: FastWake system architecture. Yellow components
are new, and grey components are modified.

FastWake also makes an effort to wake up a thread faster. The
standard way is to use the wake_up_process() kernel API which
invokes the kernel scheduler to schedule the thread. To avoid the
overheads, FastWake directly moves the thread from the waitqueue
to the head of runqueue, and then context switches to the thread.

The application needs to call ibv_ack_cq_events() after every
ibv_get_cq_event(), which takes ∼0.15`s as it increments an event
counter protected by a mutex. It forces ibv_destroy_cq() to wait
until no unacknowledged events in order to avoid a race condition
because the kernel stores CQ pointers in the pending event queue. If
a CQ is destroyed and an interrupt from the NIC delivers an event to
the EQ, a kernel segmentation fault would occur. FastWake totally
removes the need for ibv_ack_cq_events() by storing CQ numbers
instead of pointers in the pending event queue. If a CQ is destroyed
and an unacknowledged event is delivered to the CQ, the kernel can
find the invalid status of the CQ and ignore the event. Because CQ
numbers are assigned in monotonically increasing order, destroyed
CQ numbers will not be reused unless the CQ namespace is full.
In the extreme case where the CQ number wraps around zero and
a destroyed CQ number is reused, the thread may be mistakenly
waken up, but the thread would simply go back to sleep.

4 IMPLEMENTATION
As shown in Figure 5, FastWake is implemented in 5K lines of C code
which contains modifications to the OFED [5] kernel and library, a
kernel module that implements the switch_to(pid) system call, and
a user-mode daemon that manages the per-core dispatcher threads.
To minimize latency, we introduce a new system call rather than
using ioctl. FastWakeworks with unmodified RDMA applications by
introducing a shim layer above the libibverbs library that intercepts
APIs regarding CQ, completion channel and event waiting.

As a side product, FastWake also supports fast inter-process com-
munication (IPC). We introduce two system calls hibernate() and
wake_up_process(pid). A thread pid invokes hibernate() to sleep un-
til another thread/process wakes it up using wake_up_process(pid).
The hibernate() syscall simply puts the thread into interruptible
waiting state. Thewake_up_process(pid) syscall first checkswhether
the thread is in the waitqueue of the current core, and directly re-
sumes the thread if so. Otherwise, it generates an inter-processor
interrupt to the thread’s current core, where the interrupt handler
directly resumes the thread.

0.32

1.6

2

4.2

5.7

9

10.3

11.8

0 2 4 6 8 10 12 14

Context switch

Polling RDMA

FastWake RDMA (dispatcher)

FastWake RDMA (interrupt)

Interrupt RDMA (same core)

Interrupt RDMA (same NUMA)

Interrupt RDMA (average)

Interrupt RDMA (other NUMA)

(a) X86 architecture.

0.4

1.6

2.1

4.4

5.9

9

9.2

9.5

0 1 2 3 4 5 6 7 8 9 10

Context switch

Polling RDMA

FastWake RDMA (dispatcher)

FastWake RDMA (interrupt)

Interrupt RDMA (same core)

Interrupt RDMA (same NUMA)

Interrupt RDMA (average)

Interrupt RDMA (other NUMA)

(b) ARM architecture.
Figure 6: Latency (`s) of FastWake and traditional RDMA.

5 EVALUATION
We evaluate FastWake on two testbeds: an x86 testbed with dual-
socket Intel Xeon Gold 6151 CPUs and an ARM testbed with dual-
socket Kunpeng 920 CPUs [4]. Each server is equipped with an
NVIDIA ConnectX-5 NIC [6]. The NICs of two servers are di-
rectly connected with 100 Gbps fibers. Traditional RDMA latency
in polling mode is measured by perftest [8] with 64-byte RDMA
Send, where ib_send_lat works like an RPC and reports half of
the round-trip latency. For interrupt mode, we run 16 perftest [8]
processes on the same core of the server to create a core sharing
scenario. The perftest client is modified to connect to all the server
processes and generate 64-byte RDMA Sends to a randomly se-
lected process on the server. Then, a random process is waken up
on the server and responds a message, and the client is waken up
and receives the response.

Figure 6 compares the latency of FastWake and traditional RDMA.
FastWake (dispatcher) corresponds to the per-core dispatcher thread
approach. FastWake (interrupt) corresponds to the fast interrupt
delivery approach. On both x86 and ARM, the per-core dispatcher
thread approach yields minimal latency, which is only 0.4∼0.5 `s
higher than application polling. The additional latency is basically
the context switch latency (0.3∼0.4 `s) plus < 0.1`s processing
time in the user-space shim layer. When all cores use this approach,
the server utilizes 30% higher power compared to idle state, which
agrees with the measurement of [14].

The fast interrupt delivery approach has 2.2∼2.3 `s higher la-
tency than the per-core dispatcher approach. This is because the
NIC needs to first write an EQE into the event queue in host mem-
ory and then generate an interrupt to the CPU, which takes ∼1.5 `s
across the PCIe. Next, the interrupt handler also takes time to de-
termine the CQ and the waiting process. Nevertheless, FastWake
is 1.5 `s faster than traditional RDMA even when the interrupt
and application thread are co-located on the same core. This can
attribute to the full-stack optimizations that remove tasklet sched-
uling (0.6 `s), locking (0.3 `s), and the kernel scheduler (0.6 `s).

APNET 2023, June 29–30, 2023, Hong Kong, China Bojie Li, Zihao Xiang, Xiaoliang Wang, Han Ruan, Jingbin Zhou, and Kun Tan

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 20 40 60 80 100 120 140

L
a
te

n
c
y
 (

u
s
)

Number of QPs

Dispatcher Interrupt

Figure 7: Latency (`s) of FastWake on x86 with different num-
ber of QPs.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(M

 o
p
/s

)

Number of Cores

Dispatcher
Interrupt

Traditional

Figure 8: Throughput of FastWake and traditional interrupt-
mode RDMA on x86 with different number of CPU cores.

Compared to traditional RDMAwithout interrupt core affinity, Fast-
Wake reduces average latency by 80% on x86 and 77% on ARM. The
average latency of traditional RDMA is in the middle of the latency
on the same NUMA and that on another NUMA because the appli-
cation runs on a random core where the chance that it runs on the
same core is low.

The per-core dispatcher thread polls all CQs of the threads on
the core. As Figure 7 shows, its latency increases linearly with the
number of QPs. In contrast, the latency of fast interrupt delivery
approach keeps constant with different number of QPs.

Figure 8 compares the throughput of two FastWake approaches
and traditional interrupt-mode RDMA. Each core on the server
runs 16 processes and the requests are randomly sent to a process.
FastWake with dispatcher has 1.76x throughput of FastWake with
interrupt, and 4.21x of traditional RDMA. All three approaches show
90%∼93% per-core throughput with 8 cores compared to single-core
performance because there is no inter-core coordination.

To benchmark the effectiveness of dynamic CQ-to-EQ remapping
when the application migrates to other cores, we use taskset to force
core migration. We find that for the first time after core migration,
FastWake shows latency close to that of traditional RDMA (9.8 `s
for x86 and 9.1 `s for ARM) because waking up a thread on another
core takes time, and issuing a command to update the CQ-to-EQ
mapping in the NIC takes an extra 1 `s. However, for subsequent
requests, the latency resumes to the level before core migration
because the interrupts are generated on the new core.

Finally, we compare the latency between FastWake IPC and tradi-
tional IPC mechanisms (pipe and semaphore). Pipe and semaphore
are based on the virtual file system (VFS), and the wake-up process
involves the kernel scheduler. So, even when the target thread runs
on the same core, the latency is still high. In contrast, FastWake
IPC is simply a wrapper around a context switch in the same-core
case, so the standard IPC has 5x∼10x latency of FastWake IPC. For

0.32

0.39

1.65

3.29

3.96

7.39

7.82

0 1 2 3 4 5 6 7 8 9

Context switch

FastWake IPC (same core)

FastWake IPC (other core)

Semaphore IPC (same core)

Pipe IPC (same core)

Semaphore IPC (other core)

Pipe IPC (other core)

(a) X86 architecture.

0.4

0.49

1.44

2.5

2.87

4.39

4.62

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Context switch

FastWake IPC (same core)

FastWake IPC (other core)

Semaphore IPC (same core)

Pipe IPC (same core)

Semaphore IPC (other core)

Pipe IPC (other core)

(b) ARM architecture.

Figure 9: Latency (`s) of FastWake and traditional IPC.

inter-core thread wake-up, FastWake IPC greatly simplifies the IPI
delivery path so that the standard IPC has 3x∼5x latency of it.

6 DISCUSSION
Hardware feasibility. To our knowledge, CQ-to-EQ remapping
is only supported by Mellanox NICs. For other NICs, we can use
an alternative approach which keeps CQ-to-EQ mapping constant
and updates IRQ core affinity on the fly. Each thread is assigned
to a unique EQ, i.e, IRQ number. When the thread is migrated to
another core, the IRQ core affinity is updated accordingly. However,
this approach can only scale to 64∼128 threads because of limited
IRQ numbers supported by the NIC.

Scheduling fairness. FastWake bypasses the kernel scheduler.
By moving a thread to the head of runqueue, its priority is im-
plicitly increased. However, its priority is still lower than other
runqueues with higher priority, so high priority applications still
take precedence.

Future work. This work only microbenchmarks latency of small
messages on idle hosts. Future evaluations should measure the
latency under heavy workloads and the end-to-end performance of
real-world applications. Due to the lightweight nature of coroutines,
its context switching overhead is lower than FastWake. We expect
a comparison in both performance and programmability aspects.

7 CONCLUSION
Many applications have to use RDMA interrupt mode due to its
high number of threads, leading to 4x∼6x additional latency of the
underlying hardware. This paper presents FastWake, a practical
solution to reduce such latency for unmodified applications by
redesigning the host RDMA stack. Some cores can run per-core
dispatcher threads and utilize fast context switch to achieveminimal
latency overhead at the cost of high CPU utilization. The other
power-saving cores still cut latency by half by improving interrupt
core affinity and optimizing interrupt delivery path.

FastWake: Revisiting Host Network Stack for Interrupt-mode RDMA APNET 2023, June 29–30, 2023, Hong Kong, China

REFERENCES
[1] 2020. Mellanox Adapters Programmer’s Reference Manual (PRM). (2020).

https://network.nvidia.com/files/doc-2020/ethernet-adapters-programming-
manual.pdf.

[2] 2023. Boost Coroutine. (2023). https://www.boost.org/doc/libs/1_58_0/libs/
coroutine/doc/html/coroutine/coroutine.html.

[3] 2023. DPDK: Data Plane Development Kit. (2023). https://www.dpdk.org/.
[4] 2023. Kunpeng 920 ARM-based server CPU. (2023). https://www.hisilicon.com/

en/products/Kunpeng/Huawei-Kunpeng/Huawei-Kunpeng-920.
[5] 2023. Mellanox OFED. (2023). https://network.nvidia.com/products/infiniband-

drivers/linux/mlnx_ofed/.
[6] 2023. NVIDIA Mellanox ConnectX-5 adapters. (2023). https://www.nvidia.com/

en-us/networking/ethernet/connectx-5/.
[7] 2023. NVIDIA Mellanox ConnectX-6 adapters. (2023). https://www.nvidia.com/

en-us/networking/ethernet/connectx-6/.
[8] 2023. Perftest: Infiniband Verbs Performance Test. (2023). https://github.com/

linux-rdma/perftest.
[9] 2023. PHP: FastCGI Process Manager (FPM). (2023). https://www.php.net/

manual/en/install.fpm.php.
[10] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-

field, and Burton Smith. 1990. The Tera computer system. In Proceedings of the
4th International Conference on Supercomputing. 1–6.

[11] Hillel Avni, Alisher Aliev, Oren Amor, Aharon Avitzur, Ilan Bronshtein, Eli Ginot,
Shay Goikhman, Eliezer Levy, Idan Levy, Fuyang Lu, et al. 2020. Industrial-
strength OLTP using main memory and many cores. Proceedings of the VLDB
Endowment 13, 12 (2020), 3099–3111.

[12] Michael Bächle and Paul Kirchberg. 2007. Ruby on rails. IEEE Softw. 24, 6 (2007),
105–108.

[13] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
2017. Attack of the killer microseconds. Commun. ACM 60, 4 (2017), 48–54.

[14] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The data-
center as a computer: Designing warehouse-scale machines. Synthesis Lectures
on Computer Architecture 13, 3 (2018), i–189.

[15] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. 2005. Linux
device drivers. "O’Reilly Media, Inc.".

[16] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data. 1243–1254.

[17] Alan AA Donovan and Brian W Kernighan. 2015. The Go programming language.
Addison-Wesley Professional.

[18] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast remote memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 401–414.

[19] Miguel Grinberg. 2018. Flask web development: developing web applications with
python. " O’Reilly Media, Inc.".

[20] Gernot Heiser and Kevin Elphinstone. 2016. L4 microkernels: The lessons from
20 years of research and deployment. ACM Transactions on Computer Systems
(TOCS) 34, 1 (2016), 1–29.

[21] Adrian Holovaty and Jacob Kaplan-Moss. 2009. The definitive guide to Django:
Web development done right. Apress.

[22] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[23] Rod Johnson. 2005. J2EE development frameworks. Computer 38, 1 (2005),
107–110.

[24] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski,
and Gor Nishanov. 2018. Exploiting coroutines to attack the" killer nanoseconds".
Proceedings of the VLDB Endowment 11, 11 (2018), 1702–1714.

[25] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-
ières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive scheduling for `second-
scale tail latency. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 345–360.

[26] Anuj Kalia, Michael Kaminsky, and David G Andersen. [n. d.]. Design guidelines
for high performance RDMA systems. In USENIX Annual Technical Conference
(ATC), pages=437–450, year=2016.

[27] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. 158–169.

[28] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 207–220.

[29] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2020.
Spectre attacks: Exploiting speculative execution. Commun. ACM 63, 7 (2020),

93–101.
[30] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. 2019. SocksDirect:

Datacenter sockets can be fast and compatible. In Proceedings of the ACM Special
Interest Group on Data Communication. 90–103.

[31] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, et al. 2020.
Meltdown: Reading kernel memory from user space. Commun. ACM 63, 6 (2020),
46–56.

[32] Yunus Ma, Siphrey Xie, Henry Zhong, Leon Lee, and King Lv. 2022. HiEngine:
How to Architect a Cloud-Native Memory-Optimized Database Engine. In Pro-
ceedings of the 2022 International Conference on Management of Data. 2177–2190.

[33] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. 2019. Skybridge:
Fast and secure inter-process communication for microkernels. In Proceedings of
the Fourteenth EuroSys Conference. 1–15.

[34] Bruce Momjian. 2001. PostgreSQL: introduction and concepts. Vol. 192. Addison-
Wesley New York.

[35] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads.. In NSDI, Vol. 19. 361–378.

[36] Gregory F Pfister. 2001. An introduction to the infiniband architecture. High
performance mass storage and parallel I/O 42, 617-632 (2001), 102.

[37] Luigi Rizzo. 2012. netmap: a novel framework for fast packet I/O. In 21st USENIX
Security Symposium (USENIX Security). 101–112.

[38] Burton J Smith. 1978. A pipelined, shared resource MIMD computer. In Proc. 1978
Int. Conf. on Parallel Processing, IEEE. 6–8.

[39] Stefan Tilkov and Steve Vinoski. 2010. Node. js: Using JavaScript to build high-
performance network programs. IEEE Internet Computing 14, 6 (2010), 80–83.

[40] Robert Virding, Claes Wikström, and Mike Williams. 1996. Concurrent program-
ming in ERLANG. Prentice Hall International (UK) Ltd.

https://network.nvidia.com/files/doc-2020/ethernet-adapters-programming-manual.pdf
https://network.nvidia.com/files/doc-2020/ethernet-adapters-programming-manual.pdf
https://www.boost.org/doc/libs/1_58_0/libs/coroutine/doc/html/coroutine/coroutine.html
https://www.boost.org/doc/libs/1_58_0/libs/coroutine/doc/html/coroutine/coroutine.html
https://www.dpdk.org/
https://www.hisilicon.com/en/products/Kunpeng/Huawei-Kunpeng/Huawei-Kunpeng-920
https://www.hisilicon.com/en/products/Kunpeng/Huawei-Kunpeng/Huawei-Kunpeng-920
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-6/
https://www.nvidia.com/en-us/networking/ethernet/connectx-6/
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://www.php.net/manual/en/install.fpm.php
https://www.php.net/manual/en/install.fpm.php

	Abstract
	1 Introduction
	2 Background
	2.1 The Latency Hiding Problem
	2.2 RDMA in Interrupt Mode

	3 Design
	3.1 Per-core Dispatcher Thread
	3.2 Fast Interrupt Delivery

	4 Implementation
	5 Evaluation
	6 Discussion
	7 Conclusion
	References

